Joint asymptotics for semi-nonparametric regression models with partially linear structure

We consider a joint asymptotic framework for studying semi-nonparametric regression models where (finite-dimensional) Euclidean parameters and (infinite-dimensional) functional parameters are both of interest. The class of models in consideration share a partially linear structure and are estimated in two general contexts: (i) quasi-likelihood and (ii) true likelihood. We first show that the Euclidean estimator and (pointwise) functional estimator, which are re-scaled at different rates, jointly converge to a zero-mean Gaussian vector. This weak convergence result reveals a surprising joint asymptotics phenomenon: these two estimators are asymptotically independent. A major goal of this paper is to gain first-hand insights into the above phenomenon. Moreover, a likelihood ratio testing is proposed for a set of joint local hypotheses, where a new version of the Wilks phenomenon [Ann. Math. Stat. 9 (1938) 60-62; Ann. Statist. 1 (2001) 153-193] is unveiled. A novel technical tool, called a joint Bahadur representation, is developed for studying these joint asymptotics results.

[1]  M. Kosorok,et al.  The penalized profile sampler , 2007, J. Multivar. Anal..

[2]  Yuedong Wang,et al.  Smoothing Splines: Methods and Applications , 2011 .

[3]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[4]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[5]  S. Saitoh Integral Transforms, Reproducing Kernels and Their Applications , 1997 .

[6]  D. Cox,et al.  Asymptotic Analysis of Penalized Likelihood and Related Estimators , 1990 .

[7]  Guang Cheng,et al.  Nonparametric inference in generalized functional linear models , 2014, 1405.6655.

[8]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[9]  Guang Cheng,et al.  Local and global asymptotic inference in smoothing spline models , 2012, 1212.6788.

[10]  W. Rudin Principles of mathematical analysis , 1964 .

[11]  Sara van de Geer,et al.  Penalized quasi-likelihood estimation in partial linear models , 1997 .

[12]  M. Newman,et al.  Interpolation and approximation , 1965 .

[13]  Jianhua Z. Huang,et al.  Bootstrap consistency for general semiparametric $M$-estimation , 2009, 0906.1310.

[14]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[15]  Yuedong Wang,et al.  ASSIST: A Suite of S functions Implementing Spline smoothing Techniques , 2014 .

[16]  R. R. Bahadur A Note on Quantiles in Large Samples , 1966 .

[17]  Peter Radchenko,et al.  Mixed-rates asymptotics , 2008, 0803.1942.

[18]  M. Banerjee,et al.  Semiparametric binary regression models under shape constraints with an application to Indian schooling data , 2009 .

[19]  A. W. van der Vaart,et al.  On Profile Likelihood , 2000 .

[20]  Jianqing Fan,et al.  Generalized likelihood ratio statistics and Wilks phenomenon , 2001 .

[21]  Guang Cheng,et al.  Semiparametric additive isotonic regression , 2009 .

[22]  I. Pinelis OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACES , 1994, 1208.2200.

[23]  L. Goldstein,et al.  A New Class of Kernels for Nonparametric Curve Estimation , 1993 .

[24]  Jian Huang Efficient estimation of the partly linear additive Cox model , 1999 .

[25]  Guang Cheng,et al.  Semiparametric additive transformation model under current status data , 2011, 1105.1304.

[26]  D. Pollard,et al.  Cube Root Asymptotics , 1990 .

[27]  G. Wahba Spline models for observational data , 1990 .

[28]  Chong Gu Smoothing Spline Anova Models , 2002 .

[29]  Hyejin Shin,et al.  Partial functional linear regression , 2009 .

[30]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[31]  Yi Li,et al.  Semiparametric Maximum Likelihood Estimation in Normal Transformation Models for Bivariate Survival Data. , 2008, Biometrika.

[32]  George D. Birkhoff,et al.  Boundary value and expansion problems of ordinary linear differential equations , 1908 .

[33]  Douglas W. Nychka,et al.  Splines as Local Smoothers , 1995 .

[34]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[35]  Michael R. Kosorok,et al.  Robust Inference for Univariate Proportional Hazards Frailty Regression Models , 2004 .

[36]  John A. Nelder,et al.  Generalized linear models. 2nd ed. , 1993 .

[37]  M. Kosorok,et al.  General frequentist properties of the posterior profile distribution , 2006, math/0612191.

[38]  G. F. Nane,et al.  Shape Constrained Non‐parametric Estimators of the Baseline Distribution in Cox Proportional Hazards Model , 2013 .

[39]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[40]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[41]  G. Boente,et al.  Robust estimates in generalized partially linear models , 2006, 0708.0165.

[42]  How Many Iterations are Sufficient for Efficient Semiparametric Estimation? , 2013 .

[43]  M. Stone A comparison of the series of Fourier and Birkhoff , 1926 .

[44]  P. McCullagh,et al.  Generalized Linear Models , 1984 .