Segmenting a surface mesh into pants using Morse theory

A pair of pants is a genus zero orientable surface with three boundary components. A pants decomposition of a surface is a finite collection of unordered pairwise disjoint simple closed curves embedded in the surface that decompose the surface into pants. In this paper we present two Morse theory based algorithms for pants decomposition of a surface mesh. Both algorithms operates on a choice of an appropriate Morse function on the surface. The first algorithm uses this Morse function to identify handles that are glued systematically to obtain a pant decomposition. The second algorithm uses the Reeb graph of the Morse function to obtain a pant decomposition. Both algorithms work for surfaces with or without boundaries. Our preliminary implementation of the two algorithms shows that both algorithms run in much less time than an existing state-of-the-art method, and the Reeb graph based algorithm achieves the best time efficiency. Finally, we demonstrate the robustness of our algorithms against noise.

[1]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, ACM Trans. Graph..

[2]  Xin Li,et al.  Geometry-aware partitioning of complex domains for parallel quad meshing , 2017, Comput. Aided Des..

[3]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[4]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[5]  Silvia Biasotti,et al.  An overview on properties and efficacy of topological skeletons in shape modeling , 2003, 2003 Shape Modeling International..

[6]  Yoshihisa Shinagawa,et al.  ARTICULATED REEB GRAPHS FOR INTERACTIVE SKELETON ANIMATION , 2000 .

[7]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[8]  Vijay Natarajan,et al.  Efficient algorithms for computing Reeb graphs , 2009, Comput. Geom..

[9]  M. Hajij,et al.  Constructing Desirable Scalar Fields for Morse Analysis on Meshes , 2015 .

[10]  Silvia Biasotti,et al.  Extended Reeb Graphs for Surface Understanding and Description , 2000, DGCI.

[11]  Tamal K. Dey,et al.  An efficient computation of handle and tunnel loops via Reeb graphs , 2013, ACM Trans. Graph..

[12]  J. Paul Siebert,et al.  A functional-based segmentation of human body scans in arbitrary postures , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  George Karypis,et al.  A Software Package for Partitioning Unstructured Graphs , Partitioning Meshes , and Computing Fill-Reducing Orderings of Sparse Matrices Version 5 . 0 , 1998 .

[14]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[15]  Salman Parsa,et al.  A deterministic o(m log m) time algorithm for the reeb graph , 2012, SoCG '12.

[16]  S. Rosenberg The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds , 1997 .

[17]  W. Thurston,et al.  A presentation for the mapping class group of a closed orientable surface , 1980 .

[18]  Shing-Tung Yau,et al.  Computing Fenchel-Nielsen Coordinates in Teichmüller Shape Space , 2009, Commun. Inf. Syst..

[19]  Allen Hatcher Pants Decompositions of Surfaces , 1999 .

[20]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[21]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[22]  Wei Zeng,et al.  Computing Fenchel-Nielsen coordinates in Teichmuller shape Space , 2009, 2009 IEEE International Conference on Shape Modeling and Applications.

[23]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[24]  Michael Garland,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, ACM Trans. Graph..

[25]  Marco Attene,et al.  Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.

[26]  Hong Qin,et al.  Meshless thin-shell simulation based on global conformal parameterization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  Ayellet Tal,et al.  Polyhedral surface decomposition with applications , 2002, Comput. Graph..

[28]  Hong Qin,et al.  Geometry-aware domain decomposition for T-spline-based manifold modeling , 2009, Comput. Graph..

[29]  Marco Attene,et al.  Mesh Segmentation - A Comparative Study , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[30]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[31]  Tosiyasu L. Kunii,et al.  Constructing a Reeb graph automatically from cross sections , 1991, IEEE Computer Graphics and Applications.

[32]  M. Spagnuolo,et al.  Shape understanding by contour-driven retiling , 2003, The Visual Computer.

[33]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[34]  Valerio Pascucci,et al.  Loops in Reeb Graphs of 2-Manifolds , 2003, SCG '03.

[35]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[36]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[37]  Charlie C. L. Wang,et al.  Constructing common base domain by cues from Voronoi diagram , 2012, Graph. Model..

[38]  Tamal K. Dey,et al.  On Computing Handle and Tunnel Loops , 2007, 2007 International Conference on Cyberworlds (CW'07).

[39]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[40]  Hao Zhang,et al.  Spectral global intrinsic symmetry invariant functions , 2014, Graphics Interface.

[41]  Motoharu Seiki,et al.  A matrix metalloproteinase expressed on the surface of invasive tumour cells , 1994, Nature.

[42]  Hong Qin,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[43]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[44]  Xin Li,et al.  A Geometry-aware Data Partitioning Algorithm for Parallel Quad Mesh Generation on Large-scale 2D Regions , 2015 .

[45]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[46]  Franck Hétroy,et al.  Topological quadrangulations of closed triangulated surfaces using the Reeb graph , 2002, Graph. Model..

[47]  Tiow Seng Tan,et al.  Decomposing polygon meshes for interactive applications , 2001, I3D '01.

[48]  Giuseppe Patanè,et al.  Para‐Graph: Graph‐Based Parameterization of Triangle Meshes with Arbitrary Genus , 2004, Comput. Graph. Forum.

[49]  Douglas A. Reynolds,et al.  Robust text-independent speaker identification using Gaussian mixture speaker models , 1995, IEEE Trans. Speech Audio Process..

[50]  Bernd Hamann,et al.  Segmenting Point Sets , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[51]  Gauthier Lafruit,et al.  Adaptive 3D Content for Multi-Platform On-Line Games , 2007, CW 2007.

[52]  Yukio Matsumoto An Introduction to Morse Theory , 2001 .

[53]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[54]  Ayellet Tal,et al.  Metamorphosis of Polyhedral Surfaces using Decomposition , 2002, Comput. Graph. Forum.

[55]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[56]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, SIGGRAPH 2007.

[57]  Steve Fortune Proceedings of the nineteenth annual symposium on Computational geometry , 2000, SoCG 2003.

[58]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[59]  Thomas Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, SIGGRAPH 2009.

[60]  Yusu Wang,et al.  A randomized O(m log m) time algorithm for computing Reeb graphs of arbitrary simplicial complexes , 2010, SCG.

[61]  Kang Zhang,et al.  Optimizing Geometry-aware Pants Decomposition , 2012, PG.

[62]  Hui Li,et al.  On Supporting High-Quality 3D Geometry Multicasting over IEEE 802.11 Wireless Networks , 2009, IEEE Trans. Computers.

[63]  QinHong,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009 .