Numerical Schemes for Kinetic Equations in the Anomalous Diffusion Limit. Part II: Degenerate Collision Frequency
暂无分享,去创建一个
[1] A. Bensoussan,et al. Boundary Layers and Homogenization of Transport Processes , 1979 .
[2] S. Kotz,et al. Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .
[3] Thierry Goudon,et al. Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..
[4] Shi Jin,et al. Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..
[5] A. V. Bobylev,et al. Boltzmann Equations For Mixtures of Maxwell Gases: Exact Solutions and Power Like Tails , 2006 .
[6] Eugene P. Wigner,et al. Nuclear Reactor Theory , 1961 .
[7] Antoine Mellet,et al. ANOMALOUS DIFFUSION LIMIT FOR KINETIC EQUATIONS WITH DEGENERATE COLLISION FREQUENCY , 2011 .
[8] Mohammed Lemou,et al. Micro-Macro Schemes for Kinetic Equations Including Boundary Layers , 2012, SIAM J. Sci. Comput..
[9] T. Komorowski,et al. Limit theorems for additive functionals of a Markov chain , 2008, 0809.0177.
[10] Lorenzo Pareschi,et al. Numerical schemes for kinetic equations in diffusive regimes , 1998 .
[11] M. H. Ernst,et al. Scaling Solutions of Inelastic Boltzmann Equations with Over-Populated High Energy Tails , 2002 .
[12] Pierre Degond,et al. Diffusion limit for non homogeneous and non-micro-reversible processes , 2000 .
[13] Antoine Mellet,et al. Fractional diffusion limit for collisional kinetic equations: A moments method , 2009, 0910.1570.
[14] J. Keller,et al. Asymptotic solution of neutron transport problems for small mean free paths , 1974 .
[15] Antoine Mellet,et al. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach , 2011 .
[16] Irene M. Gamba,et al. On Some Properties of Kinetic and Hydrodynamic Equations for Inelastic Interactions , 2000 .
[17] A. Klar. An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .
[18] C. Bardos,et al. DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .
[19] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[20] Antoine Mellet,et al. Fractional Diffusion Limit for Collisional Kinetic Equations , 2008, 0809.2455.
[21] Nicolas Crouseilles,et al. Multiscale numerical schemes for kinetic equations in the anomalous diffusion limit , 2015 .
[22] Luc Mieussens,et al. A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..
[23] Luc Mieussens,et al. On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models , 2013, J. Comput. Phys..
[24] A. Mellet,et al. Anomalous Energy Transport in FPU-$$\beta $$β Chain , 2014, 1411.5246.
[25] V E Lynch,et al. Nondiffusive transport in plasma turbulence: a fractional diffusion approach. , 2005, Physical review letters.
[26] Bokai Yan,et al. An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit , 2016, J. Comput. Phys..