Numerical Schemes for Kinetic Equations in the Anomalous Diffusion Limit. Part II: Degenerate Collision Frequency

In this work, which is the continuation of [SIAM J. Sci. Comput., 38 (2016), pp. A737--A764], we propose numerical schemes for linear kinetic equations which are able to deal with the fractional diffusion limit. When the collision frequency degenerates for small velocities it is known that for an appropriate time scale, the small mean free path limit leads to an anomalous diffusion equation. From a numerical point of view, this degeneracy gives rise to an additional stiffness that must be treated in a suitable way to avoid a prohibitive computational cost. Our aim is therefore to construct a class of numerical schemes which are able to undertake solving this stiffness. This means that the numerical schemes are able to capture the effect of small velocities in the small mean free path limit with a fixed set of numerical parameters. Various numerical tests are performed to illustrate the efficiency of our methods in this context.

[1]  A. Bensoussan,et al.  Boundary Layers and Homogenization of Transport Processes , 1979 .

[2]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[3]  Thierry Goudon,et al.  Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..

[4]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[5]  A. V. Bobylev,et al.  Boltzmann Equations For Mixtures of Maxwell Gases: Exact Solutions and Power Like Tails , 2006 .

[6]  Eugene P. Wigner,et al.  Nuclear Reactor Theory , 1961 .

[7]  Antoine Mellet,et al.  ANOMALOUS DIFFUSION LIMIT FOR KINETIC EQUATIONS WITH DEGENERATE COLLISION FREQUENCY , 2011 .

[8]  Mohammed Lemou,et al.  Micro-Macro Schemes for Kinetic Equations Including Boundary Layers , 2012, SIAM J. Sci. Comput..

[9]  T. Komorowski,et al.  Limit theorems for additive functionals of a Markov chain , 2008, 0809.0177.

[10]  Lorenzo Pareschi,et al.  Numerical schemes for kinetic equations in diffusive regimes , 1998 .

[11]  M. H. Ernst,et al.  Scaling Solutions of Inelastic Boltzmann Equations with Over-Populated High Energy Tails , 2002 .

[12]  Pierre Degond,et al.  Diffusion limit for non homogeneous and non-micro-reversible processes , 2000 .

[13]  Antoine Mellet,et al.  Fractional diffusion limit for collisional kinetic equations: A moments method , 2009, 0910.1570.

[14]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[15]  Antoine Mellet,et al.  Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach , 2011 .

[16]  Irene M. Gamba,et al.  On Some Properties of Kinetic and Hydrodynamic Equations for Inelastic Interactions , 2000 .

[17]  A. Klar An Asymptotic-Induced Scheme for Nonstationary Transport Equations in the Diffusive Limit , 1998 .

[18]  C. Bardos,et al.  DIFFUSION APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE , 1984 .

[19]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[20]  Antoine Mellet,et al.  Fractional Diffusion Limit for Collisional Kinetic Equations , 2008, 0809.2455.

[21]  Nicolas Crouseilles,et al.  Multiscale numerical schemes for kinetic equations in the anomalous diffusion limit , 2015 .

[22]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[23]  Luc Mieussens,et al.  On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models , 2013, J. Comput. Phys..

[24]  A. Mellet,et al.  Anomalous Energy Transport in FPU-$$\beta $$β Chain , 2014, 1411.5246.

[25]  V E Lynch,et al.  Nondiffusive transport in plasma turbulence: a fractional diffusion approach. , 2005, Physical review letters.

[26]  Bokai Yan,et al.  An asymptotic-preserving scheme for linear kinetic equation with fractional diffusion limit , 2016, J. Comput. Phys..