Minimax Parametric Optimization Problems and Multidimensional Parametric Searching

The parametric minimax problem, which finds the parameter value minimizing the weight of a solution of a combinatorial maximization problem, is a fundamental problem in sensitivity analysis. Moreover, several problems in computational geometry can be formulated as parametric minimax problems. The parametric search paradigm gives an efficient sequential algorithm for a convex parametric minimax problem with one parameter if the original non-parametric problem has an efficient parallel algorithm. We consider the parametric minimax problem with d parameters for a constant d, and solve it by using multidimensional version of the parametric search paradigm. As a new feature, we give a feasible region in the parameter space in which the parameter vector must be located. Typical results obtained as applications are: (1) Efficient solutions for some geometric problems, including theoretically efficient solutions for the minimum diameter bridging problem in d-dimensional space between convex polytopes. (2) Solutions for parametric polymatroid optimization problems, including an O(n log n) time algorithm to compute the parameter vector minimizing k-largest linear parametric elements with d dimensions.

[1]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[2]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[3]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[4]  David R. Karger,et al.  Minimum cuts in near-linear time , 1996, STOC '96.

[5]  Takeshi Tokuyama Efficient algorithms for the minimum diameter bridge problem , 2003, Comput. Geom..

[6]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[7]  Kunihiko Sadakane,et al.  Quantum Computation in Computational Geometry , 2002 .

[8]  Hiroshi Imai,et al.  Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.

[9]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[10]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[11]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[12]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1995, SIAM J. Comput..

[13]  David Eppstein Geometric lower bounds for parametric matroid optimization , 1995, STOC '95.

[14]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[15]  Chan-Su Shin,et al.  Computing the Optimal Bridge between Two Polygons , 2001, Theory of Computing Systems.

[16]  Edith Cohen,et al.  Strongly polynomial-time and NC algorithms for detecting cycles in dynamic graphs , 1989, STOC '89.

[17]  Hisao Tamaki,et al.  Parametric polymatroid optimization and its geometric applications , 2002, SODA '99.

[18]  Xuehou Tan On optimal bridges between two convex regions , 2000, Inf. Process. Lett..

[19]  Ketan Mulmuley Is there an algebraic proof for P ≠ NC? (extended abstract) , 1997, STOC '97.

[20]  Éva Tardos,et al.  Using separation algorithms in fixed dimension , 1990, SODA '90.