Numerical evaluation of Airy-type integrals arising in uniform asymptotic analysis

We describe a method to evaluate integrals that arise in the asymptotic analysis when two saddle points may be close together. These integrals, which appear in problems from optics, acoustics or quantum mechanics as well as in a wide class of special functions, can be transformed into Airy-type integrals and we use the trapezoidal rule to compute these integrals numerically. The quadrature method, which remains valid when two saddle points coalesce, is illustrated with numerical examples.

[1]  C. A. Hobbs,et al.  An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives , 2000 .

[2]  Chelo Ferreira,et al.  The asymptotic expansion of the swallowtail integral in the highly oscillatory region , 2018, Appl. Math. Comput..

[3]  A. Gil,et al.  Computation of Asymptotic Expansions of Turning Point Problems via Cauchy’s Integral Formula: Bessel Functions , 2016 .

[4]  N. Temme Numerical algorithms for uniform Airy-type asymptotic expansions , 2004, Numerical Algorithms.

[5]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[6]  Daan Huybrechs,et al.  Complex Gaussian quadrature of oscillatory integrals , 2009, Numerische Mathematik.

[7]  Frank W. J. Olver,et al.  Airy and related functions , 2010, NIST Handbook of Mathematical Functions.

[8]  Nico M. Temme,et al.  On nonoscillating integrals for computing inhomogeneous Airy functions , 2001, Math. Comput..

[9]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[10]  Michael V Berry,et al.  Integrals with coalescing saddles , 2010, NIST Handbook of Mathematical Functions.

[11]  Yuesheng Xu,et al.  Computing highly oscillatory integrals , 2015, Math. Comput..

[12]  Nico M. Temme,et al.  Asymptotic Methods For Integrals , 2014 .

[13]  Nico M. Temme,et al.  Computing Complex Airy Functions by Numerical Quadrature , 2002, Numerical Algorithms.

[14]  R. Borghi Computational Optics Through Sequence Transformations , 2016 .

[15]  J. N. L. Connor Practical Methods for the Uniform Asymptotic Evaluation of Oscillating Integrals with Several Coalescing Saddle Points , 2020, Asymptotic and Computational Analysis.

[16]  Gradimir V. Milovanović,et al.  Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures , 2017 .

[17]  José L. López,et al.  Analytic formulas for the evaluation of the Pearcey integral , 2016, Math. Comput..

[18]  A. Gray Bessel Functions , 1899, Nature.

[19]  Nico M. Temme,et al.  Algorithm 822: GIZ, HIZ: two Fortran 77 routines for the computation of complex Scorer functions , 2002, TOMS.

[20]  E. T. Goodwin The evaluation of integrals of the form , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Daan Huybrechs,et al.  A Numerical Method for Oscillatory Integrals with Coalescing Saddle Points , 2018, SIAM J. Numer. Anal..

[22]  C. Chester,et al.  An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.