Engineering Design of Cochlear Implants

The cochlear implant is the most successful neural prosthesis developed to date. Approximately 60,000 people have received cochlear implants as of this writing. This number exceeds by orders of magnitude the numbers for any other type of neural prosthesis. According to the recent National Institutes of Health (NIH) Consensus Statement on Cochlear Implants (1995), “A majority of those individuals with the latest speech processors for their implants will score above 80 percent correct on high-context sentences, even without visual cues.” This level of success is truly remarkable, given the relatively crude representations of speech and other sounds provided by present implant systems.

[1]  P M Seligman,et al.  Multichannel cochlear implantation in children: a summary of current work at the University of Melbourne. , 1991, The American journal of otology.

[2]  Brian C. Wilson,et al.  Comparison of complications following frontal sinus fractures managed with exploration with or without obliteration over 10 years , 1988, The Laryngoscope.

[3]  Francis Kuk,et al.  Evaluation of five different cochlear implant designs: Audiologic assessment and predictors of performance , 1988, The Laryngoscope.

[4]  David Shipp,et al.  Speech Coding Strategies and Revised Cochlear Implant Candidacy: An Analysis of Post-Implant Performance , 2003, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[5]  Bruce J Gantz,et al.  Binaural Cochlear Implants Placed during the Same Operation , 2002, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[6]  Dirk Van Compernolle,et al.  Pitch perception by cochlear implant subjects. , 1987, The Journal of the Acoustical Society of America.

[7]  M. Dorman,et al.  The effect of parametric variations of cochlear implant processors on speech understanding. , 2000, The Journal of the Acoustical Society of America.

[8]  Q. Fu Temporal processing and speech recognition in cochlear implant users , 2002, Neuroreport.

[9]  C. Jolly,et al.  Quadrupolar stimulation for cochlear prostheses: modeling and experimental data , 1996, IEEE Transactions on Biomedical Engineering.

[10]  J. Müller,et al.  Speech Understanding in Quiet and Noise in Bilateral Users of the MED-EL COMBI 40/40+ Cochlear Implant System , 2002, Ear and hearing.

[11]  G. Bredberg,et al.  Meningitis following Cochlear Implantation: Pathomechanisms, Clinical Symptoms, Conservative and Surgical Treatments , 2002, ORL.

[12]  Jeroen J Briaire,et al.  Optimizing the Number of Electrodes with High-rate Stimulation of the Clarion CII Cochlear Implant , 2003, Acta oto-laryngologica.

[13]  Philipos C. Loizou,et al.  Mimicking the human ear , 1998, IEEE Signal Process. Mag..

[14]  T. Kubo,et al.  Cochlear Implants-An Update , 2002 .

[15]  G. Clark Cochlear implants: climbing new mountains The Graham Fraser Memorial Lecture 2001 , 2001, Cochlear implants international.

[16]  White Mw Compression systems for hearing aids and cochlear prostheses. , 1986 .

[17]  E. Hochmair,et al.  EAP Recordings in Ineraid Patients—Correlations with Psychophysical Measures and Possible Implications for Patient Fitting , 2002, Ear and hearing.

[18]  H Plenk,et al.  Perimodiolar electrodes in cochlear implant surgery. , 2001, Acta oto-laryngologica.

[19]  M Ziese,et al.  Speech Understanding with the CIS and the n-of-m Strategy in the MED-EL COMBI 40+ System , 2000, ORL.

[20]  S M Abel,et al.  The Effect of the Audallion® BEAMformer Noise Reduction Preprocessor on Sound Localization for Cochlear Implant Users , 2001, Ear and hearing.

[21]  T. Lenarz Cochlear implants: what can be achieved? , 1997, American Journal of Otology.

[22]  Richard Van Hoesel,et al.  Sound-Direction Identification, Interaural Time Delay Discrimination, and Speech Intelligibility Advantages in Noise for a Bilateral Cochlear Implant User , 2002, Ear and hearing.

[23]  R. Shannon,et al.  Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. , 2001, The Journal of the Acoustical Society of America.

[24]  Richard S. Tyler,et al.  Patients Utilizing a Hearing Aid and a Cochlear Implant: Speech Perception and Localization , 2002, Ear and hearing.

[25]  M. Saarma,et al.  Neurotrophic Factors in the Auditory Periphery , 1999, Annals of the New York Academy of Sciences.

[26]  Philipos C Loizou,et al.  Comparison of Speech Processing Strategies Used in the Clarion Implant Processor , 2003, Ear and hearing.

[27]  F B Simmons,et al.  Electrical stimulation of the auditory nerve in man. , 1966, Archives of otolaryngology.

[28]  P J Abbas,et al.  Preliminary experience with neural response telemetry in the nucleus CI24M cochlear implant. , 1998, The American journal of otology.

[29]  R. Klinke,et al.  Basic neurophysiology of cochlear-implants. , 1997, The American journal of otology.

[30]  B S Wilson,et al.  The future of cochlear implants. , 1997, British journal of audiology.

[31]  A E Vandali,et al.  Emphasis of short-duration acoustic speech cues for cochlear implant users. , 2001, The Journal of the Acoustical Society of America.

[32]  G M Clark,et al.  The perception of temporal modulations by cochlear implant patients. , 1993, The Journal of the Acoustical Society of America.

[33]  William M. Rabinowitz,et al.  Better speech recognition with cochlear implants , 1991, Nature.

[34]  Thomas Lenarz,et al.  Simultaneous Analog Stimulation (SAS)–Continuous Interleaved Sampler (CIS) Pilot Comparison Study in Europe , 1999, The Annals of otology, rhinology & laryngology. Supplement.

[35]  Bryan E. Pfingst,et al.  Effects of Stimulus Level on Speech Perception with Cochlear Prostheses , 2003, Journal of the Association for Research in Otolaryngology.

[36]  Kevin H Franck,et al.  A Model of a Nucleus 24 Cochlear Implant Fitting Protocol Based on the Electrically Evoked Whole Nerve Action Potential , 2002, Ear and hearing.

[37]  K. Plant,et al.  Speech Perception as a Function of Electrical Stimulation Rate: Using the Nucleus 24 Cochlear Implant System , 2000, Ear and hearing.

[38]  R. L. Webb,et al.  Banded Intracochlear Electrode Array: Evaluation of Insertion Trauma in Human Temporal Bones , 1985, The Annals of otology, rhinology, and laryngology.

[39]  Fan-Gang Zeng,et al.  Temporal pitch in electric hearing , 2002, Hearing Research.

[40]  P.C. Laizou,et al.  Signal-processing techniques for cochlear implants , 1999, IEEE Engineering in Medicine and Biology Magazine.

[41]  Blake S Wilson,et al.  Cochlear implants: some likely next steps. , 2003, Annual review of biomedical engineering.

[42]  W. Parkinson,et al.  Residual speech recognition and cochlear implant performance: effects of implantation criteria. , 1999, The American journal of otology.

[43]  J. T Rubinstein,et al.  Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation , 1999, Hearing Research.

[44]  Donald K. Eddington,et al.  Cochlear Implants in Adults and Children , 1995 .

[45]  P. Stypulkowski,et al.  Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve , 1987, Hearing Research.

[46]  N. Cohen,et al.  Cochlear Implants , 2000 .

[47]  M Pelizzone,et al.  Speech recognition with a CIS strategy for the ineraid multichannel cochlear implant. , 1996, The American journal of otology.

[48]  Adrien A Eshraghi,et al.  Modiolar Proximity of Three Perimodiolar Cochlear Implant Electrodes , 2002, Acta oto-laryngologica.

[49]  J Vanden Berghe,et al.  Speech Recognition in Noise for Cochlear Implantees with a Two-Microphone Monaural Adaptive Noise Reduction System , 2001, Ear and hearing.

[50]  B. S. Wilson,et al.  Comparative studies of speech processing strategies for cochlear implants , 1988, The Laryngoscope.

[51]  B. Delgutte,et al.  Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. , 2001, The Journal of the Acoustical Society of America.

[52]  C James,et al.  Speech perception in noise with implant and hearing aid. , 1997, The American journal of otology.

[53]  D. Eddington Speech discrimination in deaf subjects with cochlear implants. , 1979, The Journal of the Acoustical Society of America.

[54]  R. Shepherd,et al.  Chronic electrical stimulation of the auditory nerve in cats. Physiological and histopathological results. , 1983, Acta oto-laryngologica. Supplementum.

[55]  I. Hochmair-Desoyer,et al.  PERCEPTS FROM THE VIENNA COCHLEAR PROSTHESIS a , 1983, Annals of the New York Academy of Sciences.

[56]  Graeme M. Clark,et al.  Cochlear implantation for infants and children : advances , 1997 .

[57]  G. O'Donoghue,et al.  Intra-operative recordings of electrically evoked auditory nerve action potentials in young children by use of neural response telemetry with the Nucleus CI24M cochlear implant , 2001, British journal of audiology.

[58]  J K Shallop,et al.  Neural Response Telemetry With the Nucleus CI24M Cochlear Implant , 1999, The Laryngoscope.

[59]  W Baumgartner,et al.  Optimization of channel number and stimulation rate for the fast continuous interleaved sampling strategy in the COMBI 40+. , 1997, The American journal of otology.

[61]  P J Abbas,et al.  Electrically evoked whole-nerve action potentials: data from human cochlear implant users. , 1990, The Journal of the Acoustical Society of America.

[62]  R. Laszig,et al.  Intracochlear insertion of electrodes using hyaluronic acid in cochlear implant surgery , 2002, The Journal of Laryngology & Otology.

[63]  T Lenarz,et al.  New Clarion Electrode with Positioner: Insertion Studies , 2000, The Annals of otology, rhinology & laryngology. Supplement.

[64]  R. Hilsinger,et al.  Computer-Generated Three-Dimensional Reconstruction of the Cochlea , 1989, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[65]  H J McDermott,et al.  Pitch percepts associated with amplitude-modulated current pulse trains in cochlear implantees. , 1994, The Journal of the Acoustical Society of America.

[66]  J K Shallop,et al.  Summary of results using the nucleus CI24M implant to record the electrically evoked compound action potential. , 1999, Ear and hearing.

[67]  S A Telian,et al.  Patient performance with the Cochlear Corporation "20 + 2" implant: bipolar versus monopolar activation. , 1996, The American journal of otology.

[68]  Blake S Wilson,et al.  Three-Month Results with Bilateral Cochlear Implants , 2002, Ear and hearing.

[69]  V Hamacher,et al.  Evaluation of noise reduction systems for cochlear implant users in different acoustic environment. , 1997, The American journal of otology.

[70]  J. Flanagan Speech Analysis, Synthesis and Perception , 1971 .

[71]  J. J. Grote,et al.  The Importance of Human Cochlear Anatomy for the Results of Modiolus-Hugging Multichannel Cochlear Implants , 2001, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[72]  M J Osberger,et al.  New Directions in Speech Processing: Patient Performance with Simultaneous Analog Stimulation , 2000, The Annals of otology, rhinology & laryngology. Supplement.

[73]  W. Dobelle,et al.  Auditory Prostheses Research with Multiple Channel Intracochlear Stimulation in Man , 1978, The Annals of otology, rhinology, and laryngology.

[74]  G. E. Loeb,et al.  Design and fabrication of an experimental cochlear prosthesis , 2006, Medical and Biological Engineering and Computing.

[75]  F. Zeng,et al.  Loudness balance between electric and acoustic stimulation , 1992, Hearing Research.

[76]  D T Lawson,et al.  Temporal representations with cochlear implants. , 1997, The American journal of otology.

[77]  R. Shannon Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics , 1983, Hearing Research.

[78]  J. B. Ranck,et al.  Which elements are excited in electrical stimulation of mammalian central nervous system: A review , 1975, Brain Research.

[79]  F. Telischi,et al.  Chapter 79 – Cochlear Implant Technology , 2005 .

[80]  T Lenarz,et al.  Performance of the new Clarion speech processor 1.2 in quiet and in noise. , 1997, The American journal of otology.

[81]  Elaine Saunders,et al.  Psychophysics of a prototype peri-modiolar cochlear implant electrode array , 2001, Hearing Research.

[82]  M. Dorman,et al.  Loudness Balance between Acoustic and Electric Stimulation by a Patient with a Multichannel Cochlear Implant , 1993, Ear and hearing.

[83]  Marco Pelizzone,et al.  Channel interactions in patients using the Ineraid multichannel cochlear implant , 1993, Hearing Research.

[84]  H. Hildmann,et al.  Comparison of the TEMPO+ Ear-Level Speech Processor and the CIS PRO+ Body-Worn Processor in Adult MED-EL Cochlear Implant Users , 2001, ORL.

[85]  P J Abbas,et al.  Electrically Evoked Compound Action Potentials Recorded from Subjects who Use the Nucleus CI24M Device , 2000, The Annals of otology, rhinology & laryngology. Supplement.

[86]  Maurizio Guida,et al.  Comparison of speech perception benefits with SPEAK and ACE coding strategies in pediatric Nucleus CI24M cochlear implant recipients. , 2002, International journal of pediatric otorhinolaryngology.

[87]  R. Komorowski,et al.  Lymphoepithelioma of the larynx. , 1996, American journal of otolaryngology.

[88]  M M Merzenich,et al.  Multichannel cochlear implants. Channel interactions and processor design. , 1984, Archives of otolaryngology.

[89]  Susan B. Waltzman,et al.  A Prospective, Randomized Study of Cochlear Implants , 1993 .

[90]  M. J. Osberger,et al.  Adult Cochlear Implant Patient Performance with Evolving Electrode Technology , 2001, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[91]  Ronald W. Schafer,et al.  Digital Processing of Speech Signals , 1978 .

[92]  J K Shallop,et al.  Evaluation of a new spectral peak coding strategy for the Nucleus 22 Channel Cochlear Implant System. , 1994, The American journal of otology.

[93]  Jan Kiefer,et al.  FUNDAMENTAL ASPECTS AND FIRST RESULTS OF THE CLINICAL APPLICATION OF COMBINED ELECTRIC AND ACOUSTIC STIMULATION OF THE AUDITORY SYSTEM , 2004 .

[94]  Carolyn J Brown,et al.  Speech Perception Using Maps Based on Neural Response Telemetry Measures , 2002, Ear and hearing.

[95]  J Wouters,et al.  Enhancing the speech envelope of continuous interleaved sampling processors for cochlear implants. , 1999, The Journal of the Acoustical Society of America.

[96]  Jeroen J. Briaire,et al.  Initial Evaluation of the Clarion CII Cochlear Implant: Speech Perception and Neural Response Imaging , 2002, Ear and hearing.

[97]  J Vanden Berghe,et al.  Developments in speech processing for cochlear implants. , 1998, Acta oto-rhino-laryngologica Belgica.

[98]  William H. Shapiro,et al.  Neural Response Telemetry in 12- to 24-Month-Old Children , 2002, The Annals of otology, rhinology & laryngology. Supplement.

[99]  P J Abbas,et al.  The Relationship Between EAP and EABR Thresholds and Levels Used to Program the Nucleus 24 Speech Processor: Data from Adults , 2000, Ear and hearing.

[100]  G. M. Clark,et al.  Electrical stimulation of the auditory nerve: The effect of electrode position on neural excitation , 1993, Hearing Research.

[101]  Jan Kiefer,et al.  Optimized Speech Understanding with the Continuous Interleaved Sampling Speech Coding Strategy in Patients with Cochlear Implants: Effect of Variations in Stimulation Rate and Number of Channels , 2000, The Annals of otology, rhinology, and laryngology.

[102]  L. Mens,et al.  Speech processing strategy preferences among 55 European CLARION cochlear implant users , 2001, Scandinavian audiology. Supplementum.

[103]  B. Wilson,et al.  Cochlear Implants: Principles & Practices , 2000 .

[104]  H J McDermott,et al.  A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant. , 1992, The Journal of the Acoustical Society of America.

[105]  Michael F Dorman,et al.  A comparison of the speech understanding provided by acoustic models of fixed-channel and channel-picking signal processors for cochlear implants. , 2002, Journal of speech, language, and hearing research : JSLHR.

[106]  R V Shannon,et al.  A computer interface for psychophysical and speech research with the Nucleus cochlear implant. , 1990, The Journal of the Acoustical Society of America.

[107]  R. Hartmann,et al.  Electric-Acoustic Stimulation of the Auditory System , 1999, ORL.

[108]  R. Tyler Cochlear Implants: Audiological Foundations , 1992 .

[109]  G. Clark,et al.  Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant. , 1983, The Journal of the Acoustical Society of America.

[110]  G M Clark,et al.  The cochlear implant: a search for answers , 2000, Cochlear implants international.

[111]  M Pelizzone,et al.  Within-patient longitudinal speech reception measures with continuous interleaved sampling processors for ineraid implanted subjects. , 1999, Ear and hearing.

[112]  P Seligman,et al.  Architecture of the Spectra 22 speech processor. , 1995, The Annals of otology, rhinology & laryngology. Supplement.