IS THE PALE BLUE DOT UNIQUE? OPTIMIZED PHOTOMETRIC BANDS FOR IDENTIFYING EARTH-LIKE EXOPLANETS

The next generation of ground and space-based telescopes will image habitable planets around nearby stars. A growing literature describes how to characterize such planets with spectroscopy, but less consideration has been given to the usefulness of planet colors. Here, we investigate whether potentially Earth-like exoplanets could be identified using UV-visible-to-NIR wavelength broadband photometry (350-1000 nm). Specifically, we calculate optimal photometric bins for identifying an exo-Earth and distinguishing it from uninhabitable planets including both Solar System objects and model exoplanets. The color of some hypothetical exoplanets - particularly icy terrestrial worlds with thick atmospheres - is similar to Earth's because of Rayleigh scattering in the blue region of the spectrum. Nevertheless, subtle features in Earth's reflectance spectrum appear to be unique. In particular, Earth's reflectance spectrum has a 'U-shape' unlike all our hypothetical, uninhabitable planets. This shape is partly biogenic because O2-rich, oxidizing air is transparent to sunlight, allowing prominent Rayleigh scattering, while ozone absorbs visible light, creating the bottom of the 'U'. Whether such uniqueness has practical utility depends on observational noise. If observations are photon limited or dominated by astrophysical sources (zodiacal light or imperfect starlight suppression), then the use of broadband visible wavelength photometry to identify Earth twins has little practical advantage over obtaining detailed spectra. However, if observations are dominated by dark current then optimized photometry could greatly assist preliminary characterization. We also calculate the optimal photometric bins for identifying extrasolar Archean Earths, and find that the Archean Earth is more difficult to unambiguously identify than a modern Earth twin.

[1]  Adam Burrows,et al.  Phase Functions and Light Curves of Wide-Separation Extrasolar Giant Planets , 2005 .

[2]  N. Kiang,et al.  CHARACTERIZING THE PURPLE EARTH: MODELING THE GLOBALLY INTEGRATED SPECTRAL VARIABILITY OF THE ARCHEAN EARTH , 2013, 1311.1145.

[3]  W. A. Traub,et al.  Spectral Evolution of an Earth-like Planet , 2006 .

[4]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[5]  Martin G. Cohen,et al.  Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. , 2003, Astrobiology.

[6]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[7]  R. Clark,et al.  Mars: Near‐infrared spectral reflectance of surface regions and compositional implications , 1982 .

[8]  R. Pierrehumbert,et al.  HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE , 2011, 1105.0021.

[9]  J. Leconte,et al.  3D MODELING OF GJ1214B’S ATMOSPHERE: VERTICAL MIXING DRIVEN BY AN ANTI-HADLEY CIRCULATION , 2015, 1509.06814.

[10]  L. Arnold,et al.  A test for the search for life on extrasolar planets - Looking for the terrestrial vegetation signature in the Earthshine spectrum , 2002, astro-ph/0206314.

[11]  Lisa Kaltenegger,et al.  Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life , 2015, Proceedings of the National Academy of Sciences.

[12]  Tyler D. Robinson,et al.  ABIOTIC OZONE AND OXYGEN IN ATMOSPHERES SIMILAR TO PREBIOTIC EARTH , 2014, 1407.2622.

[13]  D. Crisp,et al.  Ground‐based near‐infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , 1996 .

[14]  Edward W. Schwieterman,et al.  DETECTION OF OCEAN GLINT AND OZONE ABSORPTION USING LCROSS EARTH OBSERVATIONS , 2014, 1405.4557.

[15]  Howard Isaacson,et al.  The Occurrence and Mass Distribution of Close-in Super-Earths, Neptunes, and Jupiters , 2010, Science.

[16]  Tyler D. Robinson,et al.  DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT , 2010, 1008.3864.

[17]  Giovanna Tinetti,et al.  Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. , 2007, Astrobiology.

[18]  Julien H. Girard,et al.  Direct-imaging discovery of a 12–14 Jupiter-mass object orbiting a young binary system of very low-mass stars , 2013, 1303.4525.

[19]  A. Burrows,et al.  MODELS OF NEPTUNE-MASS EXOPLANETS: EMERGENT FLUXES AND ALBEDOS , 2009, 0909.2043.

[20]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[21]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[22]  E. Pall'e,et al.  ON THE EFFECTS OF THE EVOLUTION OF MICROBIAL MATS AND LAND PLANTS ON THE EARTH AS A PLANET. PHOTOMETRIC AND SPECTROSCOPIC LIGHT CURVES OF PALEO-EARTHS , 2013, 1302.4232.

[23]  Timothy D. Brandt,et al.  DIRECT IMAGING DETECTION OF METHANE IN THE ATMOSPHERE OF GJ 504 b , 2013, 1310.4183.

[24]  G. Schubert,et al.  Treatise on geophysics , 2007 .

[25]  T. Ackerman,et al.  Climatic consequences of very high carbon dioxide levels in the earth's early atmosphere. , 1986, Science.

[26]  David G. Andrews An Introduction to Atmospheric Physics: Frontmatter , 2010 .

[27]  R. Kuschnig,et al.  An Upper Limit on the Albedo of HD 209458b: Direct Imaging Photometry with the MOST Satellite , 2006 .

[28]  David Crisp,et al.  Absorption of sunlight by water vapor in cloudy conditions: A partial explanation for the cloud absorption anomaly , 1997 .

[29]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[30]  Robin Wordsworth,et al.  ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS , 2014, 1403.2713.

[31]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[32]  Drake Deming,et al.  Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets , 2011 .

[33]  J. Berthier,et al.  Biomarkers in disk-averaged near-UV to near-IR Earth spectra using Earthshine observations ⋆ , 2006 .

[34]  J. Kasting,et al.  Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era , 2008 .

[35]  S. Warren,et al.  Reflection of solar radiation by the Antarctic snow surface at ultraviolet, visible, and near‐infrared wavelengths , 1994 .

[36]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[37]  V. Shuvalov,et al.  Numerical modeling for target water depth estimation of marine‐target impact craters , 2002 .

[38]  W. Cash Detection of Earth-like planets around nearby stars using a petal-shaped occulter , 2006, Nature.

[39]  E. Karkoschka Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD–Spectrophotometry , 1998 .

[40]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS , 2013, 1307.3239.

[41]  Kevin France,et al.  High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets , 2013, 1310.2590.

[42]  Kjetil Dohlen,et al.  EPICS: direct imaging of exoplanets with the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[43]  James F Kasting,et al.  A revised, hazy methane greenhouse for the Archean Earth. , 2008, Astrobiology.

[44]  R. A. E. Fosbury,et al.  High-resolution transmission spectrum of the Earth's atmosphere-seeing Earth as an exoplanet using a lunar eclipse , 2014, International Journal of Astrobiology.

[45]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[46]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[47]  Aomawa L. Shields,et al.  The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. , 2013, Astrobiology.

[48]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[49]  Colors of extreme exo-Earth environments. , 2012, Astrobiology.

[50]  David G. Andrews,et al.  An Introduction to Atmospheric Physics , 2000 .

[51]  Tom Herbst,et al.  Deciphering spectral fingerprints of habitable exoplanets. , 2009, Astrobiology.

[52]  Taro Matsuo,et al.  Second-earth imager for TMT (SEIT): a proposal and concept Description , 2010, Astronomical Telescopes + Instrumentation.

[53]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[54]  G. J. Taylor,et al.  Abundance and Distribution of Iron on the Moon , 1995, Science.

[55]  G. Tinetti,et al.  Disk-averaged synthetic spectra of Mars. , 2004, Astrobiology.

[56]  James F. Kasting,et al.  Oxygen levels in the prebiological atmosphere , 1979 .

[57]  H. Levy Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted , 1971, Science.

[58]  E. Ford,et al.  Vegetation's red edge: a possible spectroscopic biosignature of extraterrestrial plants. , 2005, Astrobiology.

[59]  E. Agol,et al.  THE CENTER OF LIGHT: SPECTROASTROMETRIC DETECTION OF EXOMOONS , 2015, 1509.01615.

[60]  Tyler D. Robinson,et al.  VIEWS FROM EPOXI: COLORS IN OUR SOLAR SYSTEM AS AN ANALOG FOR EXTRASOLAR PLANETS , 2010 .

[61]  Sara Seager,et al.  An astrophysical view of Earth-based metabolic biosignature gases. , 2012, Astrobiology.

[62]  Margaret Turnbull,et al.  Detectability of planetary characteristics in disk-averaged spectra II: synthetic spectra and light-curves of earth. , 2006, Astrobiology.

[63]  Shawn Domagal-Goldman,et al.  A bistable organic-rich atmosphere on the Neoarchaean Earth , 2012 .

[64]  D. Catling 10.13 – Planetary Atmospheres , 2015 .

[65]  Jean-Baptiste Madeleine,et al.  GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE , 2011, 1105.1031.

[66]  Richard G. Lyon,et al.  Detecting biomarkers in exoplanetary atmospheres with a Terrestrial Planet Finder , 2008, Astronomical Telescopes + Instrumentation.

[67]  E. Hulburt Explanation of the Brightness and Color of the Sky, Particularly the Twilight Sky , 1953 .

[68]  C. Sagan Pale blue dot : a vision of the human future in space , 1994 .

[69]  C. A. Grady,et al.  DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504 , 2013, 1307.2886.

[70]  I. Ribas,et al.  THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES , 2012 .

[71]  Shawn Domagal-Goldman,et al.  DETECTING AND CONSTRAINING N2 ABUNDANCES IN PLANETARY ATMOSPHERES USING COLLISIONAL PAIRS , 2015, 1507.07945.

[72]  Drake Deming,et al.  Earth as an extrasolar planet: Earth model validation using EPOXI earth observations. , 2011, Astrobiology.

[73]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[74]  R. Botet,et al.  Mean-field approximation of Mie scattering by fractal aggregates of identical spheres. , 1997, Applied optics.

[75]  W. R. Thompson,et al.  A search for life on Earth from the Galileo spacecraft , 1993, Nature.

[76]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[77]  Howard Isaacson,et al.  Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars , 2014, Proceedings of the National Academy of Sciences.

[78]  Victoria Meadows,et al.  Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. , 2013, Astrobiology.

[79]  Julien H. Girard,et al.  DISCOVERY OF A PROBABLE 4–5 JUPITER-MASS EXOPLANET TO HD 95086 BY DIRECT IMAGING , 2013, 1305.7428.

[80]  L M Mugnier,et al.  Darwin--a mission to detect and search for life on extrasolar planets. , 2009, Astrobiology.

[81]  D. Crisp Infrared radiative transfer in the dust-free Martian atmosphere , 1990 .

[82]  T. Robinson MODELING THE INFRARED SPECTRUM OF THE EARTH–MOON SYSTEM: IMPLICATIONS FOR THE DETECTION AND CHARACTERIZATION OF EARTHLIKE EXTRASOLAR PLANETS AND THEIR MOONLIKE COMPANIONS , 2011, 1110.3744.

[83]  Edward W. Schwieterman,et al.  Nonphotosynthetic Pigments as Potential Biosignatures , 2014, Astrobiology.

[84]  J. Kasting,et al.  ABIOTIC O2 LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? , 2015, 1509.07863.

[85]  Sara Seager,et al.  Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission. , 2011, Astrobiology.

[86]  J. Kasting,et al.  UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere , 2001 .

[87]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[88]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.