Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling

[1]  Francesco Saverio D'Auria,et al.  Thermal-Hydraulic System Codes in Nulcear Reactor Safety and Qualification Procedures , 2008 .

[2]  Hongbin Zhang,et al.  Uncertainty quantification and sensitivity analysis with CASL Core Simulator VERA-CS , 2016 .

[3]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[4]  Yang Liu,et al.  Validation and Uncertainty Quantification for Wall Boiling Closure Relations in Multiphase-CFD Solver , 2018, Nuclear Science and Engineering.

[5]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[6]  David Andrs,et al.  Multidimensional multiphysics simulation of nuclear fuel behavior , 2012 .

[7]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[8]  R. J. Tuttle Delayed-neutron data for reactor-physics analysis , 1975 .

[9]  Arjan J. Koning,et al.  Modern Nuclear Data Evaluation with the TALYS Code System , 2012 .

[10]  William A. Wieselquist,et al.  PSI Methodologies for Nuclear Data Uncertainty Propagation with CASMO-5M and MCNPX: Results for OECD/NEA UAM Benchmark Phase I , 2013 .

[11]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[13]  Lawrence E. Hochreiter,et al.  NEA NUCLEAR SCIENCE COMMITTEE NEA COMMITTEE ON SAFETY OF NUCLEAR INSTALLATIONS NUPEC BWR FULL-SIZE FINE-MESH BUNDLE TEST (BFBT) BENCHMARK Volume I: Specifications , 2005 .

[14]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[15]  M. Radaideh,et al.  Shapley effect application for variance-based sensitivity analysis of the few-group cross-sections , 2019, Annals of Nuclear Energy.

[16]  O. W. Hermann,et al.  ORIGEN-S : SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buidup and Decay, and Associated Radiation Source Terms , 2000 .

[17]  T. Kozlowski,et al.  Application of implicit Roe-type scheme and Jacobian-Free Newton-Krylov method to two-phase flow problems , 2018, Annals of Nuclear Energy.

[18]  H. F. Stripling,et al.  A generalized adjoint framework for sensitivity and global error estimation in time-dependent nuclear reactor simulations , 2013 .

[19]  G. Keepin,et al.  DELAYED NEUTRONS FROM FISSIONABLE ISOTOPES OF URANIUM, PLUTONIUM, AND THORIUM , 1957 .

[20]  Kristin Isaacs,et al.  Estimating Sobol sensitivity indices using correlations , 2012, Environ. Model. Softw..

[21]  Francesc Reventos,et al.  International Course to Support Nuclear Licensing by User Training in the Areas of Scaling, Uncertainty, and 3D Thermal-Hydraulics/Neutron-Kinetics Coupled Codes: 3D S.UN.COP Seminars , 2008 .

[22]  T. Simpson,et al.  Use of Kriging Models to Approximate Deterministic Computer Models , 2005 .

[23]  Ky Khac Vu,et al.  Surrogate-based methods for black-box optimization , 2017, Int. Trans. Oper. Res..

[24]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[25]  Yuan Wang,et al.  A study of double functions and load matching of a phosphoric acid fuel cell/heat-driven refrigerator hybrid system , 2016 .

[26]  Joe Wiart,et al.  Surrogate models for uncertainty quantification: An overview , 2017, 2017 11th European Conference on Antennas and Propagation (EUCAP).

[27]  M. Radaideh,et al.  A new framework for sampling-based uncertainty quantification of the six-group reactor kinetic parameters , 2019, Annals of Nuclear Energy.

[28]  Ahmed H. Elsheikh,et al.  A machine learning approach for efficient uncertainty quantification using multiscale methods , 2017, J. Comput. Phys..

[29]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[30]  Pol D. Spanos,et al.  Stochastic Finite Element Method: Response Statistics , 1991 .

[31]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..

[32]  M. Radaideh,et al.  Data-Driven and Precursor-Group Uncertainty Propagation of Lattice Kinetic Parameters in UAM Benchmark , 2019, Science and Technology of Nuclear Installations.

[33]  Stephen M. Bowman,et al.  SCALE 6: Comprehensive Nuclear Safety Analysis Code System , 2011 .

[34]  Hany S. Abdel-Khalik,et al.  Hybrid reduced order modeling applied to nonlinear models , 2012 .

[35]  Benoit Forget,et al.  Benchmark for evaluation and validation of reactor simulations (BEAVRS) , 2013 .

[36]  Tomasz Kozlowski,et al.  Coupling of system thermal–hydraulics and Monte-Carlo code: Convergence criteria and quantification of correlation between statistical uncertainty and coupled error , 2015 .

[38]  N. Kohno,et al.  Nuclide Composition Benchmark Data Set for Verifying Burnup Codes on Spent Light Water Reactor Fuels , 2002 .

[39]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[40]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[42]  Jincan Chen,et al.  Multi-objective optimisation analysis and load matching of a phosphoric acid fuel cell system , 2012 .

[43]  Cristian Rabiti,et al.  Dimensionality reducibility for multi-physics reduced order modeling , 2017 .

[44]  M. Radaideh,et al.  Advanced BWR criticality safety part I: Model development, model benchmarking, and depletion with uncertainty analysis , 2019, Progress in Nuclear Energy.

[45]  Nigel M. Sammes,et al.  Phosphoric acid fuel cells: Fundamentals and applications , 2004 .

[46]  Tuomas Viitanen,et al.  The Serpent Monte Carlo code: Status, development and applications in 2013 , 2014, ICS 2014.

[47]  Paul J. Turinsky,et al.  Efficient Subspace Methods-Based Algorithms for Performing Sensitivity, Uncertainty, and Adaptive Simulation of Large-Scale Computational Models , 2008 .

[48]  M. Avramova,et al.  Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis , 2007 .

[49]  Tomasz Kozlowski,et al.  Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian Process, Part 2: Application to TRACE , 2018, Nuclear Engineering and Design.

[50]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[51]  Ryan Nathaniel Bratton Uncertainty analysis of spent nuclear fuel isotopics and rod internal pressure , 2015 .

[52]  Mihai Anitescu,et al.  Nuclear data sensitivity, uncertainty and target accuracy assessment for future nuclear systems , 2006 .

[53]  Tomasz Kozlowski,et al.  Design optimization under uncertainty of hybrid fuel cell energy systems for power generation and cooling purposes , 2020 .

[54]  Ramana V. Grandhi,et al.  Quantification of model-form and parametric uncertainty using evidence theory , 2012 .

[55]  H. Meidani,et al.  Inverse uncertainty quantification using the modular Bayesian approach based on Gaussian process, Part 1: Theory , 2018, Nuclear Engineering and Design.

[56]  Robert G. Sargent,et al.  Verification and validation of simulation models , 2013, Proceedings of Winter Simulation Conference.

[57]  Bradley T Rearden,et al.  A Statistical Sampling Method for Uncertainty Analysis with SCALE and XSUSA , 2013 .

[58]  Tomasz Kozlowski,et al.  A roe-type numerical solver for the two-phase two-fluid six-equation model with realistic equation of state , 2018 .

[59]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[60]  T. Trucano,et al.  Verification, Validation, and Predictive Capability in Computational Engineering and Physics , 2004 .

[61]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[62]  Donald L. Smith,et al.  Nuclear Data Uncertainty Quantification: Past, Present and Future , 2015 .

[63]  Ramana V. Grandhi,et al.  A Bayesian approach for quantification of model uncertainty , 2010, Reliab. Eng. Syst. Saf..

[64]  Tomasz Kozlowski,et al.  Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics , 2019, Reliab. Eng. Syst. Saf..

[65]  Nam Dinh,et al.  Data-driven modeling for boiling heat transfer: Using deep neural networks and high-fidelity simulation results , 2018, Applied Thermal Engineering.

[66]  E. Fridman,et al.  Coupled neutronic thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system , 2011 .