Pattern extraction in trajectories and its use in enriching visualisations

Nowadays location aware devices are commonplace and produce large amounts of trajectories of moving objects like humans, cars, etc. To analyse this data there is need for proper visualisation techniques and methods to automatically extract knowledge from the data. We propose to enrich existing visualisations of trajectories by indicating significant occurrences of specific patterns. We give definitions of two patterns, junctions and stop areas, and study the geometric properties of these formalisations. We also give efficient algorithms to compute a given number of significant locations, and we implemented a variation of these to demonstrate the proposed technique.

[1]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[2]  Per Ola Kristensson,et al.  An Evaluation of Space Time Cube Representation of Spatiotemporal Patterns , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  Joachim Gudmundsson,et al.  Algorithms for hotspot computation on trajectory data , 2013, SIGSPATIAL/GIS.

[4]  Valéria Cesário Times,et al.  DB-SMoT: A direction-based spatio-temporal clustering method , 2010, 2010 5th IEEE International Conference Intelligent Systems.

[5]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[6]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[7]  Alexander Wolff,et al.  Towards an evaluation of quality for names placement methods , 2002, Int. J. Geogr. Inf. Sci..

[8]  Dino Pedreschi,et al.  Interactive visual clustering of large collections of trajectories , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[9]  Maike Buchin,et al.  Segmenting trajectories: A framework and algorithms using spatiotemporal criteria , 2011, J. Spatial Inf. Sci..

[10]  Joachim Gudmundsson,et al.  Finding Popular Places , 2010, Int. J. Comput. Geom. Appl..

[11]  Alexander Wolff,et al.  Algorithms for the placement of diagrams on maps , 2004, GIS '04.

[12]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[13]  Bettina Speckmann,et al.  Algorithmic Aspects of Proportional Symbol Maps , 2009, Algorithmica.

[14]  Lars Harrie,et al.  Real-time map labelling for mobile applications , 2006, Comput. Environ. Urban Syst..

[15]  Maarten Löffler,et al.  Median Trajectories , 2010, Algorithmica.

[16]  Sanjay Chawla,et al.  Mining spatio-temporal patterns in object mobility databases , 2008, Data Mining and Knowledge Discovery.

[17]  E. Imhof Positioning Names on Maps , 1975 .

[18]  Göran Ericsson,et al.  REAL-TIME MOOSE TRACKING: AN INTERNET BASED MAPPING APPLICATION USING GPS/GSM-COLLARS IN SWEDEN , 2004 .

[19]  Robert Weibel,et al.  Towards a taxonomy of movement patterns , 2008, Inf. Vis..

[20]  Kwan-Liu Ma,et al.  Proximity-based visualization of movement trace data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[21]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[22]  Jarke J. van Wijk,et al.  Interactive visualization of multivariate trajectory data with density maps , 2011, 2011 IEEE Pacific Visualization Symposium.

[23]  Stéphane Dray,et al.  The concept of animals' trajectories from a data analysis perspective , 2009, Ecol. Informatics.

[24]  Bettina Speckmann,et al.  Efficient Detection of Patterns in 2D Trajectories of Moving Points , 2007, GeoInformatica.

[25]  Alexander Wolff,et al.  A simple and efficient algorithm for high-quality line labeling , 2001 .

[26]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[27]  Dino Pedreschi,et al.  Unveiling the complexity of human mobility by querying and mining massive trajectory data , 2011, The VLDB Journal.

[28]  Gennady L. Andrienko,et al.  Visual analytics of movement: An overview of methods, tools and procedures , 2013, Inf. Vis..

[29]  Dino Pedreschi,et al.  Visually driven analysis of movement data by progressive clustering , 2008, Inf. Vis..

[30]  Stefan van der Spek,et al.  Interpreting Pedestrian Behaviour by Visualising and Clustering Movement Data , 2013, W2GIS.

[31]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[32]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[33]  Trisalyn A. Nelson,et al.  A review of quantitative methods for movement data , 2013, Int. J. Geogr. Inf. Sci..

[34]  Jeroen van Schaick,et al.  Sensing Human Activity: GPS Tracking , 2009, Sensors.

[35]  Xiaoru Yuan,et al.  TripVista: Triple Perspective Visual Trajectory Analytics and its application on microscopic traffic data at a road intersection , 2011, 2011 IEEE Pacific Visualization Symposium.

[36]  Daniel A. Keim,et al.  Visual Analytics: Definition, Process, and Challenges , 2008, Information Visualization.

[37]  Bettina Speckmann,et al.  Flow Map Layout via Spiral Trees , 2011, IEEE Transactions on Visualization and Computer Graphics.

[38]  Natalia Adrienko,et al.  Spatial Generalization and Aggregation of Massive Movement Data , 2011 .

[39]  Vania Bogorny,et al.  A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.

[40]  Marc J. van Kreveld,et al.  Finding REMO - Detecting Relative Motion Patterns in Geospatial Lifelines , 2004, SDH.