Numerical modelling of the mechanical behaviour of an osteon with microcracks.

In this work, we present two strategies for the numerical modelling of microcracks and damage within an osteon. A numerical model of a single osteon under compressive diametral load is developed, including lamellae organized concentrically around the haversian canal and the presence of lacunae. Elastic properties have been estimated from micromechanical models that consider the mineralized collagen fibrils reinforced with hydroxyapatite crystals and the dominating orientation of the fibrils in each lamella. Microcracks are simulated through the node release technique, enabling propagation along the lamellae interfaces by application of failure criteria initially conceived for composite materials, in particular the Brewer and Lagacé criterion for delamination. A second approach is also presented, which is based on the progressive degradation of the stiffness at the element level as the damage increases. Both strategies are discussed, showing a good agreement with experimental evidence reported by other authors. It is concluded that interlaminar shear stresses are the main cause of failure of an osteon under compressive diametral load.

[1]  T. Irving,et al.  The in situ supermolecular structure of type I collagen. , 2001, Structure.

[2]  P. Christel,et al.  The effects of remodeling on the elastic properties of bone , 2006, Calcified Tissue International.

[3]  S. Weiner,et al.  Lamellar bone: structure-function relations. , 1999, Journal of structural biology.

[4]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[5]  John C. Brewer,et al.  Quadratic Stress Criterion for Initiation of Delamination , 1988 .

[6]  P J Prendergast,et al.  Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. , 1996, Journal of biomechanical engineering.

[7]  Rizhi Wang,et al.  A Unique Microcracking Process Associated with the Inelastic Deformation of Haversian Bone , 2009 .

[8]  T. Oxland,et al.  Sub-lamellar microcracking and roles of canaliculi in human cortical bone. , 2012, Acta biomaterialia.

[9]  Sidney R. Cohen,et al.  Nanoindentation of osteonal bone lamellae. , 2012, Journal of the mechanical behavior of biomedical materials.

[10]  Stephen C. Cowin,et al.  The estimated elastic constants for a single bone osteonal lamella , 2008, Biomechanics and modeling in mechanobiology.

[11]  A. Ascenzi,et al.  The compressive properties of single osteons , 1968, The Anatomical record.

[12]  S. Weiner,et al.  Crystal organization in rat bone lamellae , 1991, FEBS letters.

[13]  A. Ascenzi,et al.  The tensile properties of single osteons , 1967, The Anatomical record.

[14]  Wai-Yim Ching,et al.  Ab Initio Calculation of Elastic Constants of Ceramic Crystals , 2007 .

[15]  C H Turner,et al.  Basic biomechanical measurements of bone: a tutorial. , 1993, Bone.

[16]  J. Currey,et al.  Strength of Bone , 1962, Nature.

[17]  F. Chang,et al.  A Progressive Damage Model for Laminated Composites Containing Stress Concentrations , 1987 .

[18]  M. Giraud‐Guille Twisted plywood architecture of collagen fibrils in human compact bone osteons , 1988, Calcified Tissue International.

[19]  I. Jasiuk,et al.  TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. , 2003, Bone.

[20]  A. Simkin,et al.  An approach to the mechanical properties of single osteonic lamellae. , 1973, Journal of biomechanics.

[21]  Walter Gebhardt,et al.  Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens , 1905, Archiv für Entwicklungsmechanik der Organismen.

[22]  G. Pharr,et al.  Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. , 2002, Journal of biomechanics.

[23]  David Taylor,et al.  Living with cracks: damage and repair in human bone. , 2007, Nature materials.

[24]  Dieter H. Pahr,et al.  Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods , 2010, Biomechanics and modeling in mechanobiology.

[25]  J. M. García-Aznar,et al.  Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach , 2011, Biomechanics and modeling in mechanobiology.

[26]  Stephen R Hallett,et al.  Prediction of impact damage in composite plates , 2000 .

[27]  Young June Yoon,et al.  An estimate of anisotropic poroelastic constants of an osteon , 2008, Biomechanics and modeling in mechanobiology.

[28]  M. Burghammer,et al.  Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.

[29]  R O Ritchie,et al.  Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. , 2006, Biomaterials.

[30]  A. Ascenzi,et al.  The shearing properties of single osteons , 1972, The Anatomical record.

[31]  Dinh Chi Pham,et al.  Progressive Failure Analysis of Composites , 2008 .

[32]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[33]  M. Ascenzi,et al.  Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. , 2006, Journal of structural biology.

[34]  Udo Nackenhorst,et al.  Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur , 2013, J. Comput. Phys..

[35]  Steve Weiner,et al.  Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone , 1998 .

[36]  F. Gebhardt Über funktionell wichtige Anordnungsweisen der gröberen und feineren Bauelemente des Wirbelthierknochens , 1901, Archiv für Entwicklungsmechanik der Organismen.

[37]  William Bonfield,et al.  Anisotropy of Nonelastic Flow in Bone , 1967 .

[38]  David Taylor,et al.  Fracture and repair of bone: a multiscale problem , 2007 .

[39]  P. Zysset,et al.  Elastic anisotropy of bone lamellae as a function of fibril orientation pattern , 2011, Biomechanics and modeling in mechanobiology.

[40]  S Cusack,et al.  Determination of the elastic constants of collagen by Brillouin light scattering. , 1979, Journal of molecular biology.

[41]  S. Cowin Bone mechanics handbook , 2001 .

[42]  Robert O. Ritchie,et al.  Invited Article , 2004 .

[43]  S. Weiner,et al.  On the relationship between the microstructure of bone and its mechanical stiffness. , 1992, Journal of biomechanics.

[44]  D. Vashishth Hierarchy of Bone Microdamage at Multiple Length Scales. , 2007, International journal of fatigue.

[45]  R. B. Ashman,et al.  Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.

[46]  S. Goldstein,et al.  Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. , 1999, Journal of biomechanics.

[47]  J. E. Tarancón,et al.  Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models , 2014, Biomechanics and modeling in mechanobiology.

[48]  Ireneusz Lapczyk,et al.  Progressive damage modeling in fiber-reinforced materials , 2007 .

[49]  J. M. García-Aznar,et al.  A bone remodelling model including the directional activity of BMUs , 2009, Biomechanics and modeling in mechanobiology.