Numerical modelling of the mechanical behaviour of an osteon with microcracks.
暂无分享,去创建一个
Eugenio Giner | Ana Vercher | A. Vercher | E. Giner | Camila Arango | Camila Arango | F Javier Fuenmayor | F. Javier Fuenmayor
[1] T. Irving,et al. The in situ supermolecular structure of type I collagen. , 2001, Structure.
[2] P. Christel,et al. The effects of remodeling on the elastic properties of bone , 2006, Calcified Tissue International.
[3] S. Weiner,et al. Lamellar bone: structure-function relations. , 1999, Journal of structural biology.
[4] R. Ritchie,et al. Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.
[5] John C. Brewer,et al. Quadratic Stress Criterion for Initiation of Delamination , 1988 .
[6] P J Prendergast,et al. Microdamage and osteocyte-lacuna strain in bone: a microstructural finite element analysis. , 1996, Journal of biomechanical engineering.
[7] Rizhi Wang,et al. A Unique Microcracking Process Associated with the Inelastic Deformation of Haversian Bone , 2009 .
[8] T. Oxland,et al. Sub-lamellar microcracking and roles of canaliculi in human cortical bone. , 2012, Acta biomaterialia.
[9] Sidney R. Cohen,et al. Nanoindentation of osteonal bone lamellae. , 2012, Journal of the mechanical behavior of biomedical materials.
[10] Stephen C. Cowin,et al. The estimated elastic constants for a single bone osteonal lamella , 2008, Biomechanics and modeling in mechanobiology.
[11] A. Ascenzi,et al. The compressive properties of single osteons , 1968, The Anatomical record.
[12] S. Weiner,et al. Crystal organization in rat bone lamellae , 1991, FEBS letters.
[13] A. Ascenzi,et al. The tensile properties of single osteons , 1967, The Anatomical record.
[14] Wai-Yim Ching,et al. Ab Initio Calculation of Elastic Constants of Ceramic Crystals , 2007 .
[15] C H Turner,et al. Basic biomechanical measurements of bone: a tutorial. , 1993, Bone.
[16] J. Currey,et al. Strength of Bone , 1962, Nature.
[17] F. Chang,et al. A Progressive Damage Model for Laminated Composites Containing Stress Concentrations , 1987 .
[18] M. Giraud‐Guille. Twisted plywood architecture of collagen fibrils in human compact bone osteons , 1988, Calcified Tissue International.
[19] I. Jasiuk,et al. TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. , 2003, Bone.
[20] A. Simkin,et al. An approach to the mechanical properties of single osteonic lamellae. , 1973, Journal of biomechanics.
[21] Walter Gebhardt,et al. Über funktionell wichtige Anordnungsweisen der feineren und gröberen Bauelemente des Wirbeltierknochens , 1905, Archiv für Entwicklungsmechanik der Organismen.
[22] G. Pharr,et al. Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. , 2002, Journal of biomechanics.
[23] David Taylor,et al. Living with cracks: damage and repair in human bone. , 2007, Nature materials.
[24] Dieter H. Pahr,et al. Sensitivity analysis and parametric study of elastic properties of an unidirectional mineralized bone fibril-array using mean field methods , 2010, Biomechanics and modeling in mechanobiology.
[25] J. M. García-Aznar,et al. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach , 2011, Biomechanics and modeling in mechanobiology.
[26] Stephen R Hallett,et al. Prediction of impact damage in composite plates , 2000 .
[27] Young June Yoon,et al. An estimate of anisotropic poroelastic constants of an osteon , 2008, Biomechanics and modeling in mechanobiology.
[28] M. Burghammer,et al. Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.
[29] R O Ritchie,et al. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models. , 2006, Biomaterials.
[30] A. Ascenzi,et al. The shearing properties of single osteons , 1972, The Anatomical record.
[31] Dinh Chi Pham,et al. Progressive Failure Analysis of Composites , 2008 .
[32] P Zioupos,et al. Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.
[33] M. Ascenzi,et al. Collagen orientation patterns in human secondary osteons, quantified in the radial direction by confocal microscopy. , 2006, Journal of structural biology.
[34] Udo Nackenhorst,et al. Individual-specific multi-scale finite element simulation of cortical bone of human proximal femur , 2013, J. Comput. Phys..
[35] Steve Weiner,et al. Modelling the three-dimensional elastic constants of parallel-fibred and lamellar bone , 1998 .
[36] F. Gebhardt. Über funktionell wichtige Anordnungsweisen der gröberen und feineren Bauelemente des Wirbelthierknochens , 1901, Archiv für Entwicklungsmechanik der Organismen.
[37] William Bonfield,et al. Anisotropy of Nonelastic Flow in Bone , 1967 .
[38] David Taylor,et al. Fracture and repair of bone: a multiscale problem , 2007 .
[39] P. Zysset,et al. Elastic anisotropy of bone lamellae as a function of fibril orientation pattern , 2011, Biomechanics and modeling in mechanobiology.
[40] S Cusack,et al. Determination of the elastic constants of collagen by Brillouin light scattering. , 1979, Journal of molecular biology.
[41] S. Cowin. Bone mechanics handbook , 2001 .
[42] Robert O. Ritchie,et al. Invited Article , 2004 .
[43] S. Weiner,et al. On the relationship between the microstructure of bone and its mechanical stiffness. , 1992, Journal of biomechanics.
[44] D. Vashishth. Hierarchy of Bone Microdamage at Multiple Length Scales. , 2007, International journal of fatigue.
[45] R. B. Ashman,et al. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. , 1993, Journal of biomechanics.
[46] S. Goldstein,et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. , 1999, Journal of biomechanics.
[47] J. E. Tarancón,et al. Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models , 2014, Biomechanics and modeling in mechanobiology.
[48] Ireneusz Lapczyk,et al. Progressive damage modeling in fiber-reinforced materials , 2007 .
[49] J. M. García-Aznar,et al. A bone remodelling model including the directional activity of BMUs , 2009, Biomechanics and modeling in mechanobiology.