Mars Global Surveyor Measurements of the Martian Solar Wind Interaction

The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer (ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data, as well as multi-spacecraft observations.

[1]  E. Harnett,et al.  The influence of a mini‐magnetopause on the magnetic pileup boundary at Mars , 2003 .

[2]  Ness,et al.  Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission , 1998, Science.

[3]  J. Connerney,et al.  Martian magnetic morphology: Contributions from the solar wind and crust , 2003 .

[4]  M. Acuna,et al.  Interaction of the solar wind with Mars from Mars Global Surveyor MAG/ER observations , 2005 .

[5]  P. Cloutier,et al.  Observations of magnetic structure at the dayside ionopause of Venus , 1995 .

[6]  S. Barabash,et al.  The solar wind interaction with Mars: Consideration of Phobos 2 mission observations of an ion composition boundary on the dayside , 1991 .

[7]  S. Barabash,et al.  Martian planetopause as seen by the plasma wave system onboard Phobos 2 , 1996 .

[8]  H. Rosenbauer,et al.  Ions of planetary origin in the Martian magnetosphere (Phobos 2/Taus experiment) , 1991 .

[9]  D. Mitchell,et al.  Observations of low‐frequency electromagnetic plasma waves upstream from the Martian shock , 2002 .

[10]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[11]  Bruce M. Jakosky,et al.  Atmospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering , 1998 .

[12]  B. Reinisch,et al.  Effects of Solar Flares on the Ionosphere of Mars , 2006, Science.

[13]  J. Espley,et al.  Initial observations of low‐frequency magnetic fluctuations in the Martian ionosphere , 2006 .

[14]  M. Maggi,et al.  First ENA observations at Mars: ENA emissions from the martian upper atmosphere , 2006 .

[15]  David P. Hinson,et al.  Ionospheric characteristics above Martian crustal magnetic anomalies , 2005 .

[16]  J. Arkani‐Hamed A 50‐degree spherical harmonic model of the magnetic field of Mars , 2001 .

[17]  D. Mitchell,et al.  Variability of the altitude of the Martian sheath , 2005 .

[18]  D. Crider The solar wind interaction with Mars: recent observations , 2002 .

[19]  J. Slavin,et al.  Bow Shock and Upstream Phenomena at Mars , 2004 .

[20]  L. N. Zhuzgov,et al.  The magnetic field of mars according to the data from the Mars 3 and Mars 5 , 1976 .

[21]  C. Mazelle,et al.  On the role of charge exchange in the formation of the Martian magnetic pileup boundary , 2001 .

[22]  D. Mitchell,et al.  Observations of the latitude dependence of the location of the martian magnetic pileup boundary , 2002 .

[23]  S. Barabash,et al.  Plasma Moments in the Environment of Mars , 2007 .

[24]  M. Galand,et al.  The profile of the hydrogen H β emission line in proton aurora , 2001 .

[25]  M. Maggi,et al.  Structure of the martian wake , 2006 .

[26]  M. Maggi,et al.  Mass composition of the escaping plasma at Mars , 2006 .

[27]  D. Mitchell,et al.  Magnetic field draping around Mars: Mars Global Surveyor results , 2001 .

[28]  R. Orville,et al.  Effect of pollution from Central American fires on cloud‐to‐ground lightning in May 1998 , 2000 .

[29]  R. Grard,et al.  Derivation of electron densities from differential potential measurements upstream and downstream of the bow shock and in the magnetosphere of Mars , 1991 .

[30]  F. Duru,et al.  Radar Soundings of the Ionosphere of Mars , 2005, Science.

[31]  E. Harnett,et al.  Three-dimensional fluid simulations of plasma asymmetries in the Martian magnetotail caused by the magnetic anomalies , 2005 .

[32]  Kenneth G. Powell,et al.  Three-dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields , 2002 .

[33]  Mioara Mandea,et al.  Crustal magnetic field of Mars , 2004 .

[34]  S. Barabash,et al.  ASPERA-3 on Mars Express , 2006 .

[35]  Christopher T. Russell,et al.  The intrinsic magnetic field and solar-wind interaction of Mars , 1992 .

[36]  K. Sauer,et al.  The IMF control of the Martian bow shock and plasma flow in the magnetosheath. Predictions of 3-D simulations and observations , 1998 .

[37]  D. Mitchell,et al.  Hot diamagnetic cavities upstream of the Martian bow shock , 2001 .

[38]  J. Cain,et al.  External fields on the nightside of Mars at Mars Global Surveyor mapping altitudes , 2005 .

[39]  M. Acuna,et al.  Martian shock and magnetic pile-up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets , 2004 .

[40]  M. Maggi,et al.  Electron oscillations in the induced martian magnetosphere , 2006 .

[41]  C. Russell,et al.  The Martian magnetosheath: how Venus-like? , 2002 .

[42]  D. Mitchell,et al.  Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars , 2002 .

[43]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.

[44]  D. Mitchell,et al.  The magnetic field draping direction at Mars from April 1999 through August 2004 , 2006 .

[45]  David L. Mitchell,et al.  The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor , 2000 .

[46]  D. Mitchell,et al.  Oxygen auger electrons observed in Mars' ionosphere , 2000 .

[47]  J. Luhmann,et al.  Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions: Luhmann/Venus and Mars: Atmospheres, Ionospheres, and Solar Wind Interactions , 1992 .

[48]  D. Mitchell,et al.  Probing upper thermospheric neutral densities at Mars using electron reflectometry , 2005 .

[49]  R. Lundin,et al.  Plasma characteristics of the boundary layer in the Martian magnetosphere , 1996 .

[50]  C. Russell,et al.  Upstream waves at Mars: Phobos observations , 1990 .

[51]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[52]  H. Rosenbauer,et al.  The dependence of the Martian magnetopause and bow shock on solar wind ram pressure according to Phobos 2 TAUS ion spectrometer measurements , 1993 .

[53]  H. Rosenbauer,et al.  Ions of martian origin and plasma sheet in the martian magnetosphere: initial results of the TAUS experiment , 1989, Nature.

[54]  J. Sauvaud,et al.  Mars Observer magnetic fields investigation , 1992 .

[55]  M. Acuna,et al.  The IMF pile-up regions near the Earth and Venus: lessons for the solar wind - Mars interaction , 2000 .

[56]  N. Ness,et al.  Effect of crustal magnetic fields on the near terminator ionosphere at Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor , 2003 .

[57]  D. Mitchell,et al.  Role of plasma waves in Mars' atmospheric loss , 2006 .

[58]  H. Hayakawa,et al.  Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express , 2004, Science.

[59]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[60]  H. Frey,et al.  An altitude‐normalized magnetic map of Mars and its interpretation , 2000 .

[61]  M. McConnell,et al.  CGRO-COMPTEL observations of the Centaurus A region , 1995 .

[62]  W. Boynton,et al.  Solar control of radar wave absorption by the Martian ionosphere , 2006 .

[63]  B. Hultqvist,et al.  First measurements of the ionospheric plasma escape from Mars , 1989, Nature.

[64]  M. Acuna,et al.  Low‐frequency plasma oscillations at Mars during the October 2003 solar storm , 2005 .

[65]  D. Mitchell,et al.  Current sheets at low altitudes in the Martian magnetotail , 2006 .

[66]  C. Russell,et al.  Propagation and damping of broadband upstream whistlers , 1995 .

[67]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[68]  D. Mitchell,et al.  On the origin of aurorae on Mars , 2006 .

[69]  R. Harrison,et al.  A characterization of discrete solar wind events detected by interplanetary scintillation mapping , 1994 .

[70]  H. Rishbeth,et al.  Simultaneous ionospheric variability on Earth and Mars , 2003 .

[71]  D. Mitchell,et al.  The Magnetic Field Pile-up and Density Depletion in the Martian Magnetosheath: A Comparison with the Plasma Depletion Layer Upstream of the Earth's Magnetopause , 2004 .

[72]  Igor V. Sokolov,et al.  Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars , 2004 .

[73]  J. Connerney,et al.  Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments , 2000 .

[74]  M. Acuna,et al.  Solar wind interaction with the ionosphere/atmosphere and crustal magnetic fields at Mars: Mars Global Surveyor Magnetometer/Electron Reflectometer, radio science, and accelerometer data , 2004 .

[75]  J. Kurths,et al.  Magnetic fields near Mars: first results , 1989, Nature.

[76]  R. Lundin,et al.  Plasma Morphology at Mars. Aspera-3 Observations , 2007 .

[77]  M. Acuna,et al.  Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail , 2004 .

[78]  O. Vaisberg,et al.  Structure and variations of solar wind-Mars interaction region , 1975 .

[79]  D. Mitchell,et al.  Tectonic implications of Mars crustal magnetism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Mitchell,et al.  Mars Global Surveyor observations of the Halloween 2003 solar superstorm's encounter with Mars , 2005 .

[81]  W. I. Axford A commentary on our present understanding of the Martian magnetosphere , 1991 .

[82]  C. Russell,et al.  Structure of the magnetic pileup boundary at Mars and Venus , 2005 .

[83]  J. Kurths,et al.  The question of an internal martian magnetic field , 1991 .

[84]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[85]  R. Lundin,et al.  Solar wind electrons as tracers of the Martian magnetotail topology , 1994 .

[86]  M. Acuna,et al.  Mars Global Surveyor Observations of Solar Wind Magnetic Field Draping Around Mars , 2004 .

[87]  D. Mitchell,et al.  The global magnetic field of Mars and implications for crustal evolution , 2001 .

[88]  J. Slavin,et al.  Martian obstacle and bow shock: origins of boundaries anisotropy , 2004 .

[89]  David E. Smith,et al.  Radio science investigations with Mars Observer , 1992 .

[90]  R. Lundin,et al.  Ion acceleration in the Martian tail: Phobos observations , 1993 .

[91]  J. Connerney,et al.  Magnetic Flux Ropes in the Martian Atmosphere: Global Characteristics , 2004 .

[92]  M. Acuna,et al.  Factors controlling the location of the Bow Shock at Mars , 2002 .

[93]  A. I. F. Stewart,et al.  The Venus ultraviolet aurora - Observations at 130.4 nm , 1986 .

[94]  D. Mitchell,et al.  A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data , 2003 .

[95]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[96]  D. Mitchell,et al.  MGS MAG/ER observations at the magnetic pileup boundary of Mars: draping enhancement and low frequency waves , 2002 .

[97]  Raymond E. Arvidson,et al.  Overview of the Mars Global Surveyor mission , 2001 .

[98]  D. Mitchell,et al.  Evidence of electron impact ionization in the magnetic pileup boundary of Mars , 1999 .

[99]  M. Acuna,et al.  The magnetic field in the pile‐up region at Mars, and its variation with the solar wind , 2003 .

[100]  David P. Hinson,et al.  Initial results from radio occultation measurements with Mars Global Surveyor , 1999 .

[101]  D. Mitchell,et al.  Venus‐like interaction of the solar wind with Mars , 1999 .

[102]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[103]  D. Mitchell,et al.  Mapping crustal magnetic fields at Mars using electron reflectometry , 2004 .

[104]  J. Cain,et al.  An n = 90 internal potential function of the Martian crustal magnetic field , 2003 .