Identification of Different Modes of Molecular Motion in Polymers That Cause Thermorheological Complexity

Abstract The viscoelastic properties of amorphous polymers are reviewed with emphasis on the glass to rubber dispersion (often referred to as the transition zone). Deviations from thermorheologieal simplicity (where molecular retardation and relaxation mechanisms have the same temperature dependence) are identified. Most theories and models of polymer chain dynamics do not address or acknowledge thermorheological complexities and correlations, such as that between the temperature dependence and the breadth of viscoelastic and dielectric dispersions of the local segmental motion. Without successful theories of these phenomena the understanding of polymer chain dynamics must be considered incomplete. In this review, old and new experimental data are used to identify the different modes of molecular motions and the domains of their contributions to the time and frequency dependence of the mechanical response of amorphous polymers. The different modes are then shown generally to have their own dependence on t...