Bayesian random threshold estimation in a Cox proportional hazards cure model

In this paper, we develop a Bayesian approach to estimate a Cox proportional hazards model that allows a threshold in the regression coefficient, when some fraction of subjects are not susceptible to the event of interest. A data augmentation scheme with latent binary cure indicators is adopted to simplify the Markov chain Monte Carlo implementation. Given the binary cure indicators, the Cox cure model reduces to a standard Cox model and a logistic regression model. Furthermore, the threshold detection problem reverts to a threshold problem in a regular Cox model. The baseline cumulative hazard for the Cox model is formulated non-parametrically using counting processes with a gamma process prior. Simulation studies demonstrate that the method provides accurate point and interval estimates. Application to a data set of oropharynx cancer patients suggests a significant threshold in age at diagnosis such that the effect of gender on disease-specific survival changes after the threshold.

[1]  Modeling Correlated Time-Varying Covariate Effects In A Cox-Type Regression Model , 2003 .

[2]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[3]  D. Pauler,et al.  Screening Based on the Risk of Cancer Calculation From Bayesian Hierarchical Changepoint and Mixture Models of Longitudinal Markers , 2001 .

[4]  James M. Boyett,et al.  Estimations of a threshold parameter in cox regression , 1997 .

[5]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[6]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[7]  J G Ibrahim,et al.  Estimating Cure Rates From Survival Data , 2003, Journal of the American Statistical Association.

[8]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[9]  K. Dear,et al.  A Nonparametric Mixture Model for Cure Rate Estimation , 2000, Biometrics.

[10]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[11]  Dani Gamerman,et al.  Bayesian dynamic models for survival data with a cure fraction , 2007, Lifetime data analysis.

[12]  Adrian F. M. Smith,et al.  Hierarchical Bayesian Analysis of Changepoint Problems , 1992 .

[13]  R. Tiwari,et al.  Change-point cure models with application to estimating the change-point effect of age of diagnosis among prostate cancer patients , 2012, Journal of applied statistics.

[14]  J M Taylor,et al.  Semi-parametric estimation in failure time mixture models. , 1995, Biometrics.

[15]  Joseph G. Ibrahim,et al.  A New Bayesian Model For Survival Data With a Surviving Fraction , 1999 .

[16]  D. Andrews Testing When a Parameter Is on the Boundary of the Maintained Hypothesis , 2001 .

[17]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[18]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[19]  T. Hanson Inference for Mixtures of Finite Polya Tree Models , 2006 .

[20]  X H Liu,et al.  The Cox proportional hazards model with change point: an epidemiologic application. , 1990, Biometrics.

[21]  S. MacEachern,et al.  Bayesian variable selection for proportional hazards models , 1999 .

[22]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[23]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[24]  Michael R. Kosorok,et al.  FURTHER DETAILS ON INFERENCE UNDER RIGHT CENSORING FOR TRANSFORMATION MODELS WITH A CHANGE-POINT BASED ON A COVARIATE THRESHOLD , 2006, math/0604043.

[25]  M. Fernö,et al.  Flow cytometry in primary breast cancer: improving the prognostic value of the fraction of cells in the S-phase by optimal categorisation of cut-off levels. , 1990, British Journal of Cancer.

[26]  O. Pons Estimation in a Cox regression model with a change-point according to a threshold in a covariate , 2003 .

[27]  G M Clark,et al.  Prediction of relapse or survival in patients with node-negative breast cancer by DNA flow cytometry. , 1989, The New England journal of medicine.

[28]  Bradley P. Carlin,et al.  Hierarchical Bayes Models for the Progression of HIV Infection Using Longitudinal CD4 T-Cell Numbers: Rejoinder , 1992 .

[29]  Anthony Y. C. Kuk,et al.  A mixture model combining logistic regression with proportional hazards regression , 1992 .

[30]  A Cox-type regression model with change-points in the covariates , 2008, Lifetime data analysis.

[31]  Joseph G. Ibrahim,et al.  Monte Carlo Methods in Bayesian Computation , 2000 .

[32]  J. Kalbfleisch Non‐Parametric Bayesian Analysis of Survival Time Data , 1978 .

[33]  A. Gelfand,et al.  Hierarchical Bayes Models for the Progression of HIV Infection Using Longitudinal CD4 T-Cell Numbers , 1992 .

[34]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .

[35]  J. P. Sy,et al.  Estimation in a Cox Proportional Hazards Cure Model , 2000, Biometrics.