Simulation of Gaussian channels via teleportation and error correction of Gaussian states

Gaussian channels are the typical way to model the decoherence introduced by the environment in continuous-variable quantum states. It is known that those channels can be simulated by a teleportation protocol using as a resource state either a maximally entangled state passing through the same channel, i.e., the Choi state, or a state that is entangled at least as much as the Choi state. Since the construction of the Choi state requires infinite mean energy and entanglement, i.e., it is unphysical, we derive instead every physical state able to simulate a given channel through teleportation with finite resources and we further find the optimal ones, i.e., the resource states that require the minimum energy and entanglement. We show that the optimal resource states are pure and equally entangled to the Choi state as measured by the entanglement of formation. We also show that the same amount of entanglement is enough to simulate an equally decohering channel, while even more entanglement can simulate less decohering channels. We finally use that fact to generalize a previously known error-correction protocol by making it able to correct noise coming not only from pure loss but from thermal loss channels as well.

[1]  T. Ralph,et al.  Quantum repeaters using continuous-variable teleportation , 2016, 1611.02794.

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  M. Wilde,et al.  Upper bounds on secret-key agreement over lossy thermal bosonic channels , 2017, 1706.04590.

[4]  T. Ralph,et al.  All-optical quantum teleportation. , 1999, Optics letters.

[5]  S. Barnett,et al.  OPTICAL STATE TRUNCATION BY PROJECTION SYNTHESIS , 1998 .

[6]  Alexander S. Holevo,et al.  Entanglement-breaking channels in infinite dimensions , 2008, Probl. Inf. Transm..

[7]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[8]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[9]  Paulina Marian,et al.  Uhlmann fidelity between two-mode Gaussian states , 2011, 1111.7067.

[10]  Gerardo Adesso,et al.  Erratum: Optimal Continuous Variable Quantum Teleportation with Limited Resources [Phys. Rev. Lett. 119, 120503 (2017)]. , 2018, Physical review letters.

[11]  Characterizing teleportation in optics , 1999, quant-ph/9903003.

[12]  N. Walk,et al.  Heralded noiseless linear amplification and distillation of entanglement , 2009, 0907.3638.

[13]  Alexander Semenovich Holevo,et al.  The Choi–Jamiolkowski forms of quantum Gaussian channels , 2011 .

[14]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[15]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[16]  Samuel L. Braunstein,et al.  Theory of channel simulation and bounds for private communication , 2017, Quantum Science and Technology.

[17]  Nathan Walk,et al.  Nondeterministic noiseless amplification via non-symplectic phase space transformations , 2012, 1211.3794.

[18]  Stefano Pirandola,et al.  Quantum Fidelity for Arbitrary Gaussian States. , 2015, Physical review letters.

[19]  Ryo Namiki,et al.  Practical limitation for continuous-variable quantum cryptography using coherent States. , 2004, Physical review letters.

[20]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[21]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[22]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[23]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[24]  Alessio Serafini,et al.  LETTER TO THE EDITOR: Symplectic invariants, entropic measures and correlations of Gaussian states , 2003, quant-ph/0307073.

[25]  J. Cirac,et al.  Extremality of Gaussian quantum states. , 2005, Physical review letters.

[26]  Mazyar Mirrahimi,et al.  Hardware-efficient autonomous quantum memory protection. , 2012, Physical review letters.

[27]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[28]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[29]  J Niset,et al.  Experimentally feasible quantum erasure-correcting code for continuous variables. , 2007, Physical review letters.

[30]  Seth Lloyd,et al.  ANALOG QUANTUM ERROR CORRECTION , 1998 .

[31]  T. Ralph,et al.  Nondeterministic Noiseless Linear Amplification of Quantum Systems , 2009 .

[32]  About the use of fidelity in continuous variable systems , 2014, 1402.0976.

[33]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[34]  Gerardo Adesso,et al.  Optimal secure quantum teleportation of coherent states of light , 2017, NanoScience + Engineering.

[35]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[36]  Stefano Pirandola,et al.  Quantum teleportation with continuous variables: A survey , 2006 .

[37]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[38]  Samuel L. Braunstein,et al.  Quantum error correction for communication with linear optics , 1998, Nature.

[39]  Josephine Dias,et al.  Quantum error correction of continuous-variable states with realistic resources , 2017, 1712.02035.

[40]  Gerardo Adesso,et al.  Optimal Continuous Variable Quantum Teleportation with Limited Resources. , 2017, Physical review letters.

[41]  T. Ralph,et al.  Quantifying entanglement in two-mode Gaussian states , 2017, 1705.03612.

[42]  Stefano Pirandola,et al.  Finite-resource teleportation stretching for continuous-variable systems , 2017, Scientific Reports.

[43]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[44]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[45]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[46]  Paulina Marian,et al.  Entanglement of formation for an arbitrary two-mode Gaussian state. , 2008, Physical review letters.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[49]  G. Giedke,et al.  Gaussian entanglement of formation , 2004 .

[50]  F. Illuminati,et al.  Extremal entanglement and mixedness in continuous variable systems , 2004, quant-ph/0402124.

[51]  G. Bowen,et al.  Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. , 2001, Physical review letters.

[52]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[53]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[54]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[55]  Nicolas J Cerf,et al.  No-go theorem for gaussian quantum error correction. , 2008, Physical review letters.

[56]  S. Pirandola,et al.  General Benchmarks for Quantum Repeaters , 2015, 1512.04945.

[57]  Y. Akbari-Kourbolagh,et al.  On the entanglement of formation of two-mode Gaussian states: a compact form , 2014, Quantum Inf. Process..

[58]  William J. Munro,et al.  Repeaters for continuous-variable quantum communication , 2016, Physical Review A.

[59]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[60]  Gerardo Adesso,et al.  Continuous Variable Quantum Information: Gaussian States and Beyond , 2014, Open Syst. Inf. Dyn..

[61]  Timothy C. Ralph,et al.  Quantum error correction of continuous-variable states against Gaussian noise , 2011 .