A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis

Abstract This paper generalizes the explicit/implicit time-integration algorithms pioneered by Belytschko, Hughes and their respective co-workers, and the FETI domain decomposition methods introduced by Farhat and his co-workers, to the case where the same Newmark scheme, but different β and γ coefficients and different time-steps, are specified in each subdomain. Building upon the work of Farhat, Crivelli and Geradin, it considers various interface boundary constraints and performs a stability analysis of the proposed time integration algorithms.

[1]  T. Hughes,et al.  An improved implicit-explicit time integration method for structural dynamics , 1989 .

[2]  Daniel Rixen,et al.  Théorie des vibrations : application à la dynamique des structures , 1993 .

[3]  Robert L. Taylor,et al.  On a finite element method for dynamic contact/impact problems , 1993 .

[4]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[5]  Ted Belytschko,et al.  Mixed-time implicit-explicit finite elements for transient analysis , 1982 .

[6]  Ted Belytschko,et al.  A Review of Recent Developments in Time Integration , 1989 .

[7]  O. C. Zienkiewicz A new look at the newmark, houbolt and other time stepping formulas. A weighted residual approach , 1977 .

[8]  C. Farhat,et al.  Optimal convergence properties of the FETI domain decomposition method , 1994 .

[9]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[10]  F. Roux Méthodes de résolution par sous-domaines en statique , 1990 .

[11]  C. Duval,et al.  A review of rheological concrete models for aircraft impact problems in nuclear power plants , 1997 .

[12]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[13]  Charbel Farhat,et al.  On the spectral stability of time integration algorithms for a class of constrained dynamics problems , 1993 .

[14]  C. Farhat,et al.  A scalable Lagrange multiplier based domain decomposition method for time‐dependent problems , 1995 .

[15]  Patrick Le Tallec,et al.  A domain-decomposed solver for nonlinear elasticity , 1992 .

[16]  Elisa D. Sotelino,et al.  A concurrent explicit-implicit algorithm in structural dynamics , 1994 .

[17]  David Dureisseix,et al.  Parallel and multi-level strategies for structural analysis , 1996 .