A Stackelberg-Nash model for new product design

Existing conjoint approaches to optimal new product design have focused on the Nash equilibrium concept to model competitive reactions. Whereas these approaches have treated all competing firms equally as Nash players, one firm may have an advantage over its rivals, e.g., more pre-experience on competitors’ behavior and/or a first-mover advantage. This paper proposes a Stackelberg-Nash (leader-followers) model which can accomodate such information for decision making. The optimal product design problem is formulated from the perspective of a profit-maximizing new entrant (the leader) who wants to launch a brand onto an existing product market and acts with foresight by anticipating price-design reactions of the incumbent firms (the Nash followers). In the absence of closed-form solutions, we use a sequential iterative procedure to compute a Stackelberg-Nash equilibrium and to establish its uniqueness. The new conjoint model is illustrated under several competitive scenarios and price, design and profit implications are compared to a simple Nash equilibrium model. We find that a Stackelberg leader strategy may not only yield a much higher profit for the new entrant than a Nash strategy, but may also lead to strong profit asymmetries between competitors with still higher profits for the incumbent firms. In other words, the incumbent firms may also benefit strongly from a new entrant choosing a Stackelberg leader strategy.

[1]  Paul E. Green,et al.  Models and Heuristics for Product Line Selection , 1985 .

[2]  Varghese S. Jacob,et al.  Genetic Algorithms for Product Design , 1996 .

[3]  R. Kohli,et al.  Heuristics for Product-Line Design Using Conjoint Analysis , 1990 .

[4]  Jacques-François Thisse,et al.  The Principle of Minimum Differentiation Holds under Sufficient Heterogeneity , 1985 .

[5]  Patrick R. McMullen,et al.  Optimal product design using a colony of virtual ants , 2007, Eur. J. Oper. Res..

[6]  W. DeSarbo,et al.  A Conjoint-Based Product Designing Procedure Incorporating Price Competition , 1994 .

[7]  Daniel Baier Methoden der Conjointanalyse in der Marktforschungs- und Marketingpraxis , 1999 .

[8]  James W. Friedman,et al.  Oligopoly and the theory of games , 1977 .

[9]  Georgia Alexouda An evolutionary algorithm approach to the share of choices problem in the product line design , 2004, Comput. Oper. Res..

[10]  Klaus Brockhoff,et al.  A comparison of two approaches to the optimal positioning of a new product in an attribute space , 1979, Z. Oper. Research.

[11]  W. DeSarbo,et al.  Product Positioning Under Price Competition , 1990 .

[12]  Harald Hruschka,et al.  An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications , 2004, Eur. J. Oper. Res..

[13]  Harald Hruschka,et al.  Conjointanalyse-basierte Produkt(linien)gestaltung unter Berücksichtigung von Konkurrenzreaktionen Conjoint-based product (line) design considering competitive reactions , 2000, OR Spectr..

[14]  Ulf Gerold Marks Neuproduktpositionierung in Wettbewerbsmärkten , 1994 .

[15]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[16]  Harald Hruschka,et al.  Genetic Algorithms for Product Design: How Well do They Really Work? , 2003 .

[17]  V. Rao,et al.  Research for product positioning and design decisions: An integrative review , 1995 .

[18]  Dick R. Wittink,et al.  Commercial use of conjoint analysis in Europe: Results and critical reflections , 1994 .

[19]  Vithala R. Rao,et al.  Conjoint Measurement- for Quantifying Judgmental Data , 1971 .

[20]  H. Stackelberg,et al.  Marktform und Gleichgewicht , 1935 .

[21]  Jeffrey D. Camm,et al.  Conjoint Optimization: An Exact Branch-and-Bound Algorithm for the Share-of-Choice Problem , 2006, Manag. Sci..

[22]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[23]  Harald Hruschka,et al.  Produktliniengestaltung mit Genetischen Algorithmen , 2002 .

[24]  Sönke Albers,et al.  Experiments in Competitive Product Positioning: Actual Behavior Compared to Nash Solutions , 2001 .

[25]  D. Wittink,et al.  Commercial Use of Conjoint Analysis: A Survey , 1982 .

[26]  Paul E. Green,et al.  Buyer Choice Simulators, Optimizers, and Dynamic Models , 2004 .

[27]  Jean Jaskold Gabszewicz,et al.  Spatial competition and the location of firms , 1986 .

[28]  G. Dobson,et al.  Heuristics for pricing and positioning a product-line using conjoint and cost data , 1993 .

[29]  Warren H. Hausman,et al.  Technical Note: Mathematical Properties of the Optimal Product Line Selection Problem Using Choice-Based Conjoint Analysis.: Mathematical Properties of the Optimal Product Line Selection Problem Using Choice-Based Conjoint Analysis. , 2000 .

[30]  Hanif D. Sherali,et al.  Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations , 1983, Oper. Res..

[31]  Ramesh Krishnamurti,et al.  A Heuristic Approach to Product Design , 1987 .

[32]  D. Reibstein,et al.  Wharton On Dynamic Competitive Strategy , 2006 .

[33]  Richard M. Johnson Trade-Off Analysis of Consumer Values , 1974 .

[34]  S. Chan Choi,et al.  Game theoretic derivations of competitive strategies in conjoint analysis , 1993 .

[35]  Philippe Cattin,et al.  Commercial Use of Conjoint Analysis: An Update , 1989 .

[36]  Gregory Dobson,et al.  Positioning and Pricing a Product Line , 1988 .

[37]  Daniel Baier,et al.  Gewinnorientierte Produktliniengestaltung unter Berücksichtigung des Kundennutzens , 1995 .

[38]  Wolfgang Gaul,et al.  Mathematische Methoden der Wirtschaftswissenschaften : Festschrift für Otto Opitz , 1999 .

[39]  Paul E. Green,et al.  A General Approach to Product Design Optimization via Conjoint Analysis , 1981 .

[40]  J. Aubin Mathematical methods of game and economic theory , 1979 .

[41]  Konstantinos Paparrizos,et al.  A genetic algorithm approach to the product line design problem using the seller's return criterion: An extensive comparative computational study , 2001, Eur. J. Oper. Res..

[42]  Suresh K. Nair,et al.  Near optimal solutions for product line design and selection: beam search heuristics , 1995 .

[43]  Wayne S. DeSarbo,et al.  A Numerical Approach to Deriving Long-Run Equilibrium Solutions in Spatial Positioning Models , 1992 .

[44]  Paul E. Green,et al.  An Application of a Product Positioning Model to Pharmaceutical Products , 1992 .