Geometric Representations of Dichotomous Ordinal Data
暂无分享,去创建一个
[1] R. Shepard. The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .
[2] Michael Hoffmann,et al. Graph Drawings with Relative Edge Length Specifications , 2014, CCCG.
[3] Edith Elkind,et al. Structure in Dichotomous Preferences , 2015, IJCAI.
[4] Ulrike von Luxburg,et al. Local Ordinal Embedding , 2014, ICML.
[5] Noga Alon,et al. Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics , 2005, SODA '05.
[6] Peter Eades,et al. Fixed edge-length graph drawing is NP-hard , 1990, Discret. Appl. Math..
[7] Robert D. Nowak,et al. Low-dimensional embedding using adaptively selected ordinal data , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[8] W. Hays,et al. Multidimensional unfolding: Determining the dimensionality of ranked preference data , 1960 .
[9] Kirk Pruhs,et al. The one-dimensional Euclidean domain: finitely many obstructions are not enough , 2015, Soc. Choice Welf..
[10] Patrick J. F. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 2003 .
[11] Dominik Peters,et al. Recognising Multidimensional Euclidean Preferences , 2016, AAAI.
[12] Nir Ailon,et al. An Active Learning Algorithm for Ranking from Pairwise Preferences with an Almost Optimal Query Complexity , 2010, J. Mach. Learn. Res..
[13] Golan Yona,et al. Distributional Scaling: An Algorithm for Structure-Preserving Embedding of Metric and Nonmetric Spaces , 2004, J. Mach. Learn. Res..
[14] Stephen G. Kobourov,et al. Weak Unit Disk and Interval Representation of Graphs , 2015, WG.
[15] David J. Kriegman,et al. Generalized Non-metric Multidimensional Scaling , 2007, AISTATS.
[16] Jean-Claude Falmagne,et al. A Polynomial Time Algorithm for Unidimensional Unfolding Representations , 1994, J. Algorithms.
[17] J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .
[18] J. Kruskal. Nonmetric multidimensional scaling: A numerical method , 1964 .
[19] Subhash Challa,et al. Weighted MDS for Sensor Localization , 2008, ICCSA.