Geometric Representations of Dichotomous Ordinal Data

Motivated by the study of ordinal embeddings in machine learning and by the recognition of Euclidean preferences in computational social science, we study the following problem. Given a graph G, together with a set of relationships between pairs of edges, each specifying that an edge must be longer than another edge, is it possible to construct a straight-line drawing of G satisfying all these relationships?

[1]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[2]  Michael Hoffmann,et al.  Graph Drawings with Relative Edge Length Specifications , 2014, CCCG.

[3]  Edith Elkind,et al.  Structure in Dichotomous Preferences , 2015, IJCAI.

[4]  Ulrike von Luxburg,et al.  Local Ordinal Embedding , 2014, ICML.

[5]  Noga Alon,et al.  Ordinal embeddings of minimum relaxation: general properties, trees, and ultrametrics , 2005, SODA '05.

[6]  Peter Eades,et al.  Fixed edge-length graph drawing is NP-hard , 1990, Discret. Appl. Math..

[7]  Robert D. Nowak,et al.  Low-dimensional embedding using adaptively selected ordinal data , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[8]  W. Hays,et al.  Multidimensional unfolding: Determining the dimensionality of ranked preference data , 1960 .

[9]  Kirk Pruhs,et al.  The one-dimensional Euclidean domain: finitely many obstructions are not enough , 2015, Soc. Choice Welf..

[10]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[11]  Dominik Peters,et al.  Recognising Multidimensional Euclidean Preferences , 2016, AAAI.

[12]  Nir Ailon,et al.  An Active Learning Algorithm for Ranking from Pairwise Preferences with an Almost Optimal Query Complexity , 2010, J. Mach. Learn. Res..

[13]  Golan Yona,et al.  Distributional Scaling: An Algorithm for Structure-Preserving Embedding of Metric and Nonmetric Spaces , 2004, J. Mach. Learn. Res..

[14]  Stephen G. Kobourov,et al.  Weak Unit Disk and Interval Representation of Graphs , 2015, WG.

[15]  David J. Kriegman,et al.  Generalized Non-metric Multidimensional Scaling , 2007, AISTATS.

[16]  Jean-Claude Falmagne,et al.  A Polynomial Time Algorithm for Unidimensional Unfolding Representations , 1994, J. Algorithms.

[17]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[18]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[19]  Subhash Challa,et al.  Weighted MDS for Sensor Localization , 2008, ICCSA.