A new class of semi-parametric estimators of the second order parameter.
暂无分享,去创建一个
[1] J. Teugels,et al. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .
[2] P. Hall,et al. Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .
[3] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[4] M. R. Leadbetter,et al. On Exceedance Point Processes for Stationary Sequences under Mild Oscillation Restrictions , 1989 .
[5] M. Neves,et al. Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .
[6] Laurens de Haan,et al. On regular variation and its application to the weak convergence of sample extremes , 1973 .
[7] Edgar Kaufmann,et al. Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .
[8] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[9] Jan Beirlant,et al. Tail Index Estimation and an Exponential Regression Model , 1999 .
[10] L. Haan,et al. A moment estimator for the index of an extreme-value distribution , 1989 .
[11] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[12] U. Stadtmüller,et al. Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[13] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[14] Jan Beirlant,et al. Excess functions and estimation of the extreme-value index , 1996 .
[15] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[16] L. Haan,et al. Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .
[17] Armelle Guillou,et al. A diagnostic for selecting the threshold in extreme value analysis , 2001 .
[18] J. D. T. Oliveira,et al. The Asymptotic Theory of Extreme Order Statistics , 1979 .