A new class of semi-parametric estimators of the second order parameter.

The main goal of this paper is to develop, under a semi-parametric context, asymptotically normal estimators of the second order parameter ρ, a parameter related to the rate of convergence of maximum values, linearly normalized, towards its limit. Asymptotic normality of such estimators is achieved under a third order condition on the tail 1 − F of the underlying model F , and for suitably large intermediate ranks. The class of estimators introduced is dependent on some control or tuning parameters and has the advantage of providing estimators with stable sample paths, as functions of the number k of top order statistics to be considered, for large values of k; such a behaviour makes obviously less important the choice of an optimal k. The practical validation of asymptotic results for small finite samples is done by means of simulation techniques in Fréchet and Burr models.

[1]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[2]  P. Hall,et al.  Estimating a tail exponent by modelling departure from a Pareto distribution , 1999 .

[3]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[4]  M. R. Leadbetter,et al.  On Exceedance Point Processes for Stationary Sequences under Mild Oscillation Restrictions , 1989 .

[5]  M. Neves,et al.  Alternatives to a Semi-Parametric Estimator of Parameters of Rare Events—The Jackknife Methodology* , 2000 .

[6]  Laurens de Haan,et al.  On regular variation and its application to the weak convergence of sample extremes , 1973 .

[7]  Edgar Kaufmann,et al.  Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .

[8]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[9]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[10]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .

[11]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[12]  U. Stadtmüller,et al.  Generalized regular variation of second order , 1996, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[13]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[14]  Jan Beirlant,et al.  Excess functions and estimation of the extreme-value index , 1996 .

[15]  M. Gomes,et al.  Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .

[16]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[17]  Armelle Guillou,et al.  A diagnostic for selecting the threshold in extreme value analysis , 2001 .

[18]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .