Disparity and convergence in bipedal archosaur locomotion

This study aims to investigate functional disparity in the locomotor apparatus of bipedal archosaurs. We use reconstructions of hindlimb myology of extant and extinct archosaurs to generate musculoskeletal biomechanical models to test hypothesized convergence between bipedal crocodile-line archosaurs and dinosaurs. Quantitative comparison of muscle leverage supports the inference that bipedal crocodile-line archosaurs and non-avian theropods had highly convergent hindlimb myology, suggesting similar muscular mechanics and neuromuscular control of locomotion. While these groups independently evolved similar musculoskeletal solutions to the challenges of parasagittally erect bipedalism, differences also clearly exist, particularly the distinct hip and crurotarsal ankle morphology characteristic of many pseudosuchian archosaurs. Furthermore, comparative analyses of muscle design in extant archosaurs reveal that muscular parameters such as size and architecture are more highly adapted or optimized for habitual locomotion than moment arms. The importance of these aspects of muscle design, which are not directly retrievable from fossils, warns against over-extrapolating the functional significance of anatomical convergences. Nevertheless, links identified between posture, muscle moments and neural control in archosaur locomotion suggest that functional interpretations of osteological changes in limb anatomy traditionally linked to postural evolution in Late Triassic archosaurs could be constrained through musculoskeletal modelling.

[1]  A. Romer Crocodilian pelvic muscles and their avian and reptilian homologues. Bulletin of the AMNH ; v. 48, article 15. , 1923 .

[2]  W. Sellers,et al.  Estimating dinosaur maximum running speeds using evolutionary robotics , 2007, Proceedings of the Royal Society B: Biological Sciences.

[3]  M. Benton,et al.  Superiority, Competition, and Opportunism in the Evolutionary Radiation of Dinosaurs , 2008, Science.

[4]  P. Manning,et al.  Pelvic and hindlimb myology of the basal archosaur Poposaurus gracilis (archosauria: Poposauroidea) , 2011, Journal of morphology.

[5]  M. Norell,et al.  Extreme convergence in the body plans of an early suchian (Archosauria) and ornithomimid dinosaurs (Theropoda) , 2006, Proceedings of the Royal Society B: Biological Sciences.

[6]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[7]  J. Bonaparte Locomotion in rauisuchid thecodonts , 1984 .

[8]  Peter L. Falkingham,et al.  A computational analysis of locomotor anatomy and body mass evolution in Allosauroidea (Dinosauria: Theropoda) , 2012, Paleobiology.

[9]  Denham B. Heliams,et al.  Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics , 2007, Journal of Experimental Biology.

[10]  A. Biewener,et al.  Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis). , 2001, The Journal of experimental biology.

[11]  John R. Hutchinson,et al.  The evolutionary continuum of limb function from early theropods to birds , 2009, Naturwissenschaften.

[12]  P. Aerts,et al.  Morphology and morphometrics of the appendicular musculature in geckoes with different locomotor habits (Lepidosauria) , 1999, Zoomorphology.

[13]  S. Gatesy,et al.  An electromyographic analysis of hindlimb function in Alligator during terrestrial locomotion , 1997, Journal of morphology.

[14]  J. Parrish The origin of crocodilian locomotion , 1987, Paleobiology.

[15]  S. Chatterjee,et al.  Postosuchus, a New Thecodontian Reptile from the Triassic of Texas and the Origin of Tyrannosaurs , 1985 .

[16]  W. Sellers,et al.  Sensitivity Analysis in Evolutionary Robotic Simulations of Bipedal Dinosaur Running , 2010 .

[17]  Nicola Jones,et al.  Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis , 2010, Journal of anatomy.

[18]  M. Benton,et al.  The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida) , 2010 .

[19]  W. Joyce,et al.  The Bipedal Stem Crocodilian Poposaurus gracilis: Inferring Function in Fossils and Innovation in Archosaur Locomotion , 2011 .

[20]  S. Nesbitt THE ANATOMY OF EFFIGIA OKEEFFEAE (ARCHOSAURIA, SUCHIA), THEROPOD-LIKE CONVERGENCE, AND THE DISTRIBUTION OF RELATED TAXA , 2007 .

[21]  Alan M. Wilson,et al.  Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus) , 2006, Journal of anatomy.

[22]  Robert T. Barker DINOSAUR PHYSIOLOGY AND THE ORIGIN OF MAMMALS , 1971, Evolution; international journal of organic evolution.

[23]  Stephen M. Gatesy,et al.  Caudofemoral musculature and the evolution of theropod locomotion , 1990, Paleobiology.

[24]  Stephen M Gatesy,et al.  Guineafowl hind limb function. II: Electromyographic analysis and motor pattern evolution , 1999, Journal of morphology.

[25]  John R. Hutchinson,et al.  The Anatomical Foundation for Multidisciplinary Studies of Animal Limb Function: Examples from Dinosaur and Elephant Limb Imaging Studies , 2008 .

[26]  W. Sellers,et al.  Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors , 2005, Journal of The Royal Society Interface.

[27]  S. Nesbitt The Early Evolution of Archosaurs: Relationships and the Origin of Major Clades , 2011 .

[28]  P. Aerts,et al.  Functional morphology of the hindlimb musculature of the black-billed magpie, Pica pica (Aves, Corvidae) , 1998, Zoomorphology.

[29]  A. Wilson,et al.  Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus) , 2007, Journal of anatomy.

[30]  J. Hutchinson,et al.  Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed , 2005, Paleobiology.

[31]  John R. Hutchinson,et al.  Adductors, abductors, and the evolution of archosaur locomotion , 2000, Paleobiology.

[32]  M. Carrano Homoplasy and the evolution of dinosaur locomotion , 2000, Paleobiology.

[33]  Stephen M. Gatesy,et al.  Bipedalism, flight, and the evolution of theropod locomotor diversity , 1997 .