The energy-storage frontier: Lithium-ion batteries and beyond

Materials play a critical enabling role in many energy technologies, but their development and commercialization often follow an unpredictable and circuitous path. In this article, we illustrate this concept with the history of lithium-ion (Li-ion) batteries, which have enabled unprecedented personalization of our lifestyles through portable information and communication technology. These remarkable batteries enable the widespread use of laptop and tablet computers, access to entertainment on portable devices such as hand-held music players and video game consoles, and enhanced communication and networking on personal devices such as cellular telephones and watches. A similar transformation of transportation to electric cars and of the electricity grid to widespread deployment of variable renewable solar and wind generation, effortless time-shifting of energy generation and demand, and a transition from central to distributed energy services requires next-generation energy storage that delivers much higher performance at lower cost. The path to these next-generation batteries is likely to be as circuitous and unpredictable as the path to today’s Li-ion batteries. We analyze the performance and cost improvements needed to transform transportation and the electricity grid, and we evaluate the outlook for meeting these needs with next-generation beyond Li-ion batteries.

[1]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[4]  K. Abraham,et al.  The lithium/titanium disulphide secondary battery (extended abstract) , 1989 .

[5]  M. Whittingham The hydrated intercalation complexes of the layered disulfides , 1974 .

[6]  Kevin G. Gallagher,et al.  Quantifying Hysteresis and Voltage Fade in xLi2MnO3●(1-x)LiMn0.5Ni0.5O2 Electrodes as a Function of Li2MnO3 Content , 2014 .

[7]  Yong Yang,et al.  Recent progress in research on high-voltage electrolytes for lithium-ion batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[9]  Y. Nishi The development of lithium ion secondary batteries. , 2001 .

[10]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[11]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[12]  N. A. Hampson,et al.  A review of cells based on lithium negative electrodes (anodes) , 1984 .

[13]  F. C. Laman,et al.  Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries , 1989 .

[14]  Bo Liang,et al.  Silicon-based materials as high capacity anodes for next generation lithium ion batteries , 2014 .

[15]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[16]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[17]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[18]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[19]  J. Fergus,et al.  The formation and stability of the solid electrolyte interface on the graphite anode , 2014 .

[20]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[21]  M. Whittingham Electrointercalation in transition-metal disulphides , 1974 .

[22]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[23]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[24]  H. Tran,et al.  Influence of the technical process parameters on structural, mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes – A review , 2014 .

[25]  Doron Aurbach,et al.  Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell , 1995 .

[26]  R. Hamlen,et al.  Lithium–titanium disulfide rechargeable cell performance after 35 years of storage , 2015 .

[27]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[28]  Xianghui Xiao,et al.  Full-field synchrotron tomography of nongraphitic foam and laminate anodes for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[29]  A. Lerf Storylines in intercalation chemistry. , 2014, Dalton transactions.

[30]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[31]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[32]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[33]  Bernard Simon,et al.  Lithium insertion into host materials: the key to success for Li ion batteries , 1999 .

[34]  J. Goodenough,et al.  Advanced Electrodes for High Power Li-ion Batteries , 2013, Materials.

[35]  Doron Aurbach,et al.  Safety and Performance of Tadiran TLR‐7103 Rechargeable Batteries , 1996 .

[36]  J. B. Taylor,et al.  The molicel® rechargeable lithium system: Multicell aspects , 1987 .

[37]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[38]  M Cais,et al.  Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors , 1971, Science.

[39]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[40]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[41]  M. Winter,et al.  Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries , 2014 .

[42]  Bingyun Li,et al.  Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries , 2014 .

[43]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[44]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[45]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[46]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[47]  J. Besenhard The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes , 1976 .

[48]  Hong Li,et al.  Thermodynamic analysis on energy densities of batteries , 2011 .

[49]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[50]  Qiang Zhang,et al.  Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries , 2015 .

[51]  Anton Van der Ven,et al.  Phase transformations and volume changes in spinel LixMn2O4 , 2000 .

[52]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[53]  J. Besenhard,et al.  High energy density lithium cellsPart I. Electrolytes and anodes , 1976 .

[54]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[55]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[56]  Ralph E. White,et al.  Characterization of Commercially Available Lithium-Ion Batteries , 1998 .

[57]  M. Thackeray,et al.  Effect of electrode dimensionality and morphology on the performance of Cu2Sb thin film electrodes for lithium-ion batteries , 2011 .

[58]  G. Crabtree The joint center for energy storage research: A new paradigm for battery research and development , 2014, 1411.7042.

[59]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[60]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[61]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[62]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[63]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[64]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[65]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[66]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[67]  Doron Aurbach,et al.  Design of electrolyte solutions for Li and Li-ion batteries: a review , 2004 .