Optimizing the Tribological Behavior of Hybrid Copper Surface Composites Using Statistical and Machine Learning Techniques

[1]  I. Dinaharan,et al.  Effect of Traverse Speed on Microstructure and Microhardness of Cu/B4C Surface Composite Produced by Friction Stir Processing , 2013, Transactions of the Indian Institute of Metals.

[2]  R. Paretkar,et al.  Analyzing dry sliding wear behaviour of copper matrix composites reinforced with pre-coated SiCp particles , 2009 .

[3]  I. Dinaharan,et al.  Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing , 2013 .

[4]  Lan Jiang,et al.  Wear behavior and mechanism of B4C reinforced Mg-matrix composites fabricated by metal-assisted pressureless infiltration technique , 2015 .

[5]  Gholamreza Khalaj,et al.  Artificial neural network to predict the effects of coating parameters on layer thickness of chromium carbonitride coating on pre-nitrided steels , 2013, Neural Computing and Applications.

[6]  G. P. Kalaignan,et al.  Tribological and electrochemical corrosion behavior of Ni–W/BN (hexagonal) nano-composite coatings , 2015 .

[7]  A. Najafizadeh,et al.  Correlation between processing parameters and strain-induced martensitic transformation in cold worked AISI 301 stainless steel , 2008 .

[8]  R. Binder,et al.  Development of self-lubricating composite materials of nickel with molybdenum disulfide, graphite and hexagonal boron nitride processed by powder metallurgy: preliminary study , 2013 .

[9]  R. Dehmolaei,et al.  Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing , 2015 .

[10]  L. Kumaraswamidhas,et al.  High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, ALN and ZrB2 in-situ composites , 2016 .

[11]  Tohid Azimzadegan,et al.  An artificial neural-network model for impact properties in X70 pipeline steels , 2012, Neural Computing and Applications.

[12]  T. Thankachan,et al.  Microstructural, mechanical and tribological behavior of aluminum nitride reinforced copper surface composites fabricated through friction stir processing route , 2017 .

[13]  Chenghua Sun,et al.  AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties , 2009 .

[14]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[15]  A. Volinsky,et al.  Aluminum powder size and microstructure effects on properties of boron nitride reinforced aluminum matrix composites fabricated by semi-solid powder metallurgy , 2015 .

[16]  S. F. Moustafa,et al.  Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing , 2009 .

[17]  K. V. Sudhakar,et al.  Prediction of corrosion-fatigue behavior of DP steel through artificial neural network , 2001 .

[18]  Chengying Xu,et al.  Fabrication of AA6061/Al2O3 nano ceramic particle reinforced composite coating by using friction stir processing , 2010 .

[19]  J. You,et al.  Prediction of plastic deformation of fiber-reinforced copper matrix composites , 2002 .

[20]  R. M. Leal,et al.  Effect of friction stir processing parameters on the microstructural and electrical properties of copper , 2015 .

[21]  T. Thankachan,et al.  Investigations on the effect of friction stir processing on Cu-BN surface composites , 2018 .

[22]  A. Rahi,et al.  Microstructural, mechanical, and thermophysical characterization of Cu/WC composite layers fabricated via friction stir processing , 2014 .

[23]  Qiang Liu,et al.  Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing , 2013 .

[24]  J. Čadek,et al.  Creep in copper dispersion strengthened with fine alumina particles and reinforced with alumina short fibres—an ODS copper matrix composite , 2004 .

[25]  M. B. Givi,et al.  Mechanical and microstructural characterization of Cu/CNT nanocomposite layers fabricated via friction stir processing , 2015 .

[26]  T. Thankachan,et al.  Parametric optimization of dry sliding wear loss of copper–MWCNT composites , 2017 .

[27]  H. Matsubara,et al.  Microstructural development in AlN composite ceramics , 1999 .

[28]  Yanchun Zhou,et al.  Highly conductive and strengthened copper matrix composite reinforced by Zr2Al3C4 particulates , 2009 .

[29]  N. Radhika,et al.  Investigation on Mechanical Properties and Analysis of Dry Sliding Wear Behavior of Al LM13/AlN Metal Matrix Composite Based on Taguchi's Technique , 2017 .

[30]  Gholamreza Khalaj,et al.  Artificial neural networks application to predict the ultimate tensile strength of X70 pipeline steels , 2013, Neural Computing and Applications.

[31]  A. Gerlich,et al.  Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters , 2014 .

[32]  I. Dinaharan,et al.  Role of friction stir processing parameters on microstructure and microhardness of boron carbide particulate reinforced copper surface composites , 2013 .

[33]  I. Dinaharan,et al.  Prediction of mechanical and wear properties of copper surface composites fabricated using friction stir processing , 2014 .

[34]  Ali Nazari,et al.  Artificial neural network to predict the effect of heat treatments on Vickers microhardness of low-carbon Nb microalloyed steels , 2013, Neural Computing and Applications.

[35]  O. Ajayi,et al.  Surface Layer Modification of 6061 Al Alloy by Friction Stir Processing and Second Phase Hard Particles for Improved Friction and Wear Performance , 2014 .

[36]  I. Dinaharan,et al.  Fabrication and Characterization of CU/B4C Surface Dispersion Strengthened Composite using Friction Stir Processing , 2014 .

[37]  Javad Seyfi,et al.  On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior , 2011 .