Frame-based deconvolution of Poissonian images using alternating direction optimization

Restoration of Poissonian images is a class of inverse problem arising in fields such medical and astronomical imaging. Regularization criteria that combine the Poisson log-likelihood with a non-smooth convex regularizer lead to optimization problems with several difficulties: the log-likelihood does not have a Lipschitzian gradient; the regularizer is non-smooth; there is a non-negativity constraint. Using convex analysis tools, we give sufficient conditions for existence and uniqueness of solutions of these optimization problems for (frame-based) analysis and synthesis formulations. Then, we attack these problems with an adapted version of the alternating direction method of multipliers and show that sufficient conditions for convergence are met. The algorithm is shown to be competitive, often outperform, state-of-the-art methods.

[1]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[2]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[3]  Mário A. T. Figueiredo,et al.  Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[4]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[5]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[6]  Alfred O. Hero,et al.  Ieee Transactions on Image Processing: to Appear Penalized Maximum-likelihood Image Reconstruction Using Space-alternating Generalized Em Algorithms , 2022 .

[7]  S. Mallat A wavelet tour of signal processing , 1998 .

[8]  Robert D. Nowak,et al.  A statistical multiscale framework for Poisson inverse problems , 2000, IEEE Trans. Inf. Theory.

[9]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[10]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[11]  Fionn Murtagh,et al.  Multiresolution Support Applied to Image Filtering and Restoration , 1995, CVGIP Graph. Model. Image Process..

[12]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[13]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[14]  Robert D. Nowak,et al.  Fast multiresolution photon-limited image reconstruction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[15]  A. Nehorai,et al.  Deconvolution methods for 3-D fluorescence microscopy images , 2006, IEEE Signal Processing Magazine.

[16]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[17]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[18]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[19]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[20]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[21]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[22]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[23]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[24]  Robert D. Nowak,et al.  Platelets: a multiscale approach for recovering edges and surfaces in photon-limited medical imaging , 2003, IEEE Transactions on Medical Imaging.

[25]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[26]  Robert D. Nowak,et al.  A Bayesian multiscale framework for Poisson inverse problems , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[27]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .