Quantum Oscillation and Electronic Structure of Sn4As3 and Sn4P3

[1]  Yanjun Qi,et al.  Superconductivity in an Orbital-reoriented SnAs Square Lattice: a Case Study of Li0.6Sn2As2 and NaSnAs. , 2022, Angewandte Chemie.

[2]  Qing-ming Zhang,et al.  Electronic structure and open-orbit Fermi surface topology in isostructural semimetals NbAs2 and W2As3 with extremely large magnetoresistance , 2022, Applied Physics Letters.

[3]  X. Tan,et al.  High Performance Sodium Ion Anodes Based on Sn4P3 Encapsulated within Amphiphilic Graphene Tubes , 2021, Advanced Energy Materials.

[4]  Yunhao Lu,et al.  Angle-resolved photoemission spectroscopy study of the electronic structure evolution in Sn4X3 (X = P, As, Sb) , 2021 .

[5]  Jingyu Sun,et al.  Revealing the Various Electrochemical Behaviors of Sn4P3 Binary Alloy Anodes in Alkali Metal Ion Batteries , 2021, Advanced Functional Materials.

[6]  Qiang Sun,et al.  Biomimetic Sn4P3 Anchored on Carbon Nanotubes as an Anode for High-Performance Sodium-Ion Batteries. , 2020, ACS nano.

[7]  C. Heil,et al.  Electronic structure and superconductivity of the non-centrosymmetric Sn4As3 , 2019, New Journal of Physics.

[8]  Shuang Jia,et al.  A New Magnetic Topological Quantum Material Candidate by Design , 2019, ACS central science.

[9]  Zaiping Guo,et al.  Understanding High-Energy-Density Sn4P3 Anodes for Potassium-Ion Batteries , 2018, Joule.

[10]  P. Guo,et al.  Magneto-transport and electronic structures of BaZnBi2 , 2017, 1708.06531.

[11]  Yijia Huang,et al.  Electronic structure of SrSn2As2 near the topological critical point , 2017, Scientific Reports.

[12]  Y. Domi,et al.  Charge–Discharge Properties of a Sn4P3 Negative Electrode in Ionic Liquid Electrolyte for Na-Ion Batteries , 2017 .

[13]  Zhaoqiang Li,et al.  Low‐Temperature Solution‐Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries , 2016 .

[14]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[15]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[16]  Xinping Ai,et al.  Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. , 2014, Nano letters.

[17]  M. Yoshimura,et al.  Sn4As3 revisited: Solvothermal synthesis and crystal and electronic structure , 2009 .

[18]  P. B. Littlewood,et al.  Non-saturating magnetoresistance in heavily disordered semiconductors , 2003, Nature.

[19]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[20]  P. Eckerlin,et al.  Darstellung und Kristallstruktur der Phasen „Sn4P3” und „Sn4As3” , 1968 .

[21]  G. Hägg,et al.  LXXII. X-ray studies on the systems tin-antimony and tin-arsenic , 1935 .

[22]  Bo Peng,et al.  A High‐Rate and Ultrastable Sodium Ion Anode Based on a Novel Sn4P3‐P@Graphene Nanocomposite , 2018 .

[23]  N. A. Sörensen,et al.  X-Ray Investigations of the Tin-Phosphorus System. , 1970 .