Preparation of thin film GaAs on glass by pulsed-laser deposition

One of the most straightforward methods possible is presented and investigated to form thin film GaAs. The film was deposited on unheated glass in vacuum (10-6 Torr) by the ablation from a GaAs wafer with the emission of a pulsed Nd:YAG laser (532 nm, 6 ns, 10 Hz). The photoluminescence, photocurrent, transmission and micro-Raman measurements of the films demonstrate that films with promising optoelectronic properties have been formed. Most importantly, from the viewpoint of light emitting and optoelectronic device production, the films show photoluminescence of comparable intensity with the bulk material without emissions owing to impurities, although the films show a rather flat absorption edge which indicates tail states. The observed photocurrent was in the μA/W range driven by rather moderate electric fields on the order of 100 V/cm. Concerning the material quality, the films have an extremely smooth surface as demonstrated with scanning electron microscopy. Grown GaAs films on glass substrates were amorphous evidenced by X-ray diffraction measurements, however, micro-Raman measurements showed crystalline phonon modes, suggesting that localized crystalline structure might co-exist in amorphous GaAs films.