Changing Trends in Computational Drug Repositioning

Efforts to maximize the indications potential and revenue from drugs that are already marketed are largely motivated by what Sir James Black, a Nobel Prize-winning pharmacologist advocated—“The most fruitful basis for the discovery of a new drug is to start with an old drug”. However, rational design of drug mixtures poses formidable challenges because of the lack of or limited information about in vivo cell regulation, mechanisms of genetic pathway activation, and in vivo pathway interactions. Hence, most of the successfully repositioned drugs are the result of “serendipity”, discovered during late phase clinical studies of unexpected but beneficial findings. The connections between drug candidates and their potential adverse drug reactions or new applications are often difficult to foresee because the underlying mechanism associating them is largely unknown, complex, or dispersed and buried in silos of information. Discovery of such multi-domain pharmacomodules—pharmacologically relevant sub-networks of biomolecules and/or pathways—from collection of databases by independent/simultaneous mining of multiple datasets is an active area of research. Here, while presenting some of the promising bioinformatics approaches and pipelines, we summarize and discuss the current and evolving landscape of computational drug repositioning.

[1]  Donald A. Wilson,et al.  ApoE-Directed Therapeutics Rapidly Clear β-Amyloid and Reverse Deficits in AD Mouse Models , 2012, Science.

[2]  Isaac S. Kohane,et al.  ksRepo: a generalized platform for computational drug repositioning , 2016, BMC Bioinformatics.

[3]  Wei Wang,et al.  A Novel Knowledge-Driven Systems Biology Approach for Phenotype Prediction upon Genetic Intervention , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[4]  Yi Pan,et al.  Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm , 2016, Bioinform..

[5]  Stephen T. C. Wong,et al.  Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. , 2014, Drug discovery today.

[6]  I. Kola,et al.  Can the pharmaceutical industry reduce attrition rates? , 2004, Nature Reviews Drug Discovery.

[7]  P. Sanseau,et al.  Computational Drug Repositioning: From Data to Therapeutics , 2013, Clinical pharmacology and therapeutics.

[8]  E. Schadt Molecular networks as sensors and drivers of common human diseases , 2009, Nature.

[9]  Joshua F. McMichael,et al.  DGIdb - Mining the druggable genome , 2013, Nature Methods.

[10]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[11]  Douglas E. V. Pires,et al.  pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures , 2015, Journal of medicinal chemistry.

[12]  David S. Wishart,et al.  T3DB: the toxic exposome database , 2014, Nucleic Acids Res..

[13]  Anton Yuryev,et al.  Computational Approaches for Drug Repositioning and Combination Therapy Design , 2010, J. Bioinform. Comput. Biol..

[14]  Michael J. Barratt,et al.  Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping , 2010, Molecular pain.

[15]  Weida Tong,et al.  In silico drug repositioning: what we need to know. , 2013, Drug discovery today.

[16]  Lionel Colliandre,et al.  e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design , 2012, Bioinform..

[17]  Steven J. M. Jones,et al.  Drug repositioning for personalized medicine , 2012, Genome Medicine.

[18]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[19]  Gary D Bader,et al.  A draft map of the human proteome , 2014, Nature.

[20]  Jae Yong Cho,et al.  Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer , 2011, PloS one.

[21]  Emre Guney,et al.  Reproducible Drug Repurposing: When Similarity Does Not Suffice , 2017, PSB.

[22]  Ellen T. Gelfand,et al.  Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies , 2014, Scientific Data.

[23]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[24]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[25]  Zhiyong Lu,et al.  Pathway-based drug repositioning using causal inference , 2013, BMC Bioinformatics.

[26]  Ying Li,et al.  Validating drug repurposing signals using electronic health records: a case study of metformin associated with reduced cancer mortality , 2014, J. Am. Medical Informatics Assoc..

[27]  Núria Queralt-Rosinach,et al.  DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes , 2015, Database J. Biol. Databases Curation.

[28]  Chao Chen,et al.  dbVar and DGVa: public archives for genomic structural variation , 2012, Nucleic Acids Res..

[29]  Miyoung Shin,et al.  A Systematic Framework for Drug Repositioning from Integrated Omics and Drug Phenotype Profiles Using Pathway-Drug Network , 2016, BioMed research international.

[30]  Diego di Bernardo,et al.  Mantra 2.0: an online collaborative resource for drug mode of action and repurposing by network analysis , 2014, Bioinform..

[31]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[32]  Zhigang Luo,et al.  Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery , 2016, BMC Genomics.

[33]  Robert Gentleman,et al.  Statistical Applications in Genetics and Molecular Biology , 2005 .

[34]  Ting Chen,et al.  Global optimization-based inference of chemogenomic features from drug-target interactions , 2015, Bioinform..

[35]  Yoonjeong Cha,et al.  Pharma Perspective on Drug Repurposing , 2017 .

[36]  Vijay S. Pande,et al.  Low Data Drug Discovery with One-Shot Learning , 2016, ACS central science.

[37]  Stefan Günther,et al.  SuperPred: drug classification and target prediction , 2008, Nucleic Acids Res..

[38]  Michael J. Purcaro,et al.  The PsychENCODE project , 2015, Nature Neuroscience.

[39]  Philip E. Bourne,et al.  Drug Discovery Using Chemical Systems Biology: Repositioning the Safe Medicine Comtan to Treat Multi-Drug and Extensively Drug Resistant Tuberculosis , 2009, PLoS Comput. Biol..

[40]  Sampsa Hautaniemi,et al.  Data integration to prioritize drugs using genomics and curated data , 2016, BioData Mining.

[41]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[42]  Anton Yuryev,et al.  Pathway analysis for design of promiscuous drugs and selective drug mixtures. , 2006, Current drug discovery technologies.

[43]  Quan Xu,et al.  ADReCS: an ontology database for aiding standardization and hierarchical classification of adverse drug reaction terms , 2014, Nucleic Acids Res..

[44]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[45]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[46]  Alberto D. Pascual-Montano,et al.  NFFinder: an online bioinformatics tool for searching similar transcriptomics experiments in the context of drug repositioning , 2015, Nucleic Acids Res..

[47]  Vijay S. Pande,et al.  Massively Multitask Networks for Drug Discovery , 2015, ArXiv.

[48]  Alex Zhavoronkov,et al.  Applications of Deep Learning in Biomedicine. , 2016, Molecular pharmaceutics.

[49]  Katarzyna H. Kaminska,et al.  Characterization of drug-induced transcriptional modules: towards drug repositioning and functional understanding , 2013, Molecular systems biology.

[50]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[51]  Zhi-hua Chen,et al.  Kyoto Encyclopedia of Genes and Genomes were used for functional enrichment analysis of differentially expressed genes (DEGs). A protein‐protein interaction network was constructed, and the hub genes were subjected to module analysis and identification using Search Tool for the Retrieval , 2019 .

[52]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[53]  Barend Mons,et al.  Open PHACTS: semantic interoperability for drug discovery. , 2012, Drug discovery today.

[54]  Yoshihiro Yamanishi,et al.  Relating drug–protein interaction network with drug side effects , 2012, Bioinform..

[55]  Ségolène Aymé,et al.  Networking for rare diseases: a necessity for Europe , 2007, Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz.

[56]  Hon-Cheong So,et al.  A machine learning approach to drug repositioning based on drug expression profiles: Applications in psychiatry , 2017, 1706.03014.

[57]  Zuping Zhang,et al.  Network-Based Inference Methods for Drug Repositioning , 2015, Comput. Math. Methods Medicine.

[58]  Nicola Nosengo Can you teach old drugs new tricks? , 2016, Nature.

[59]  Francisco Azuaje,et al.  Drug interaction networks: an introduction to translational and clinical applications. , 2013, Cardiovascular research.

[60]  Alexander E. Ivliev,et al.  Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach , 2013, PloS one.

[61]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[62]  B. Padhy,et al.  Drug repositioning: re-investigating existing drugs for new therapeutic indications. , 2011, Journal of postgraduate medicine.

[63]  Christian von Mering,et al.  STITCH: interaction networks of chemicals and proteins , 2007, Nucleic Acids Res..

[64]  C. Begley,et al.  Drug development: Raise standards for preclinical cancer research , 2012, Nature.

[65]  Justin Starren,et al.  Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review , 2017, Drug Safety.

[66]  Kenji Mizuguchi,et al.  Systems Biology Approaches to a Rational Drug Discovery Paradigm. , 2015, Current topics in medicinal chemistry.

[67]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[68]  Xiaobo Zhou,et al.  An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data , 2011, Bioinform..

[69]  R. Sharan,et al.  PREDICT: a method for inferring novel drug indications with application to personalized medicine , 2011, Molecular systems biology.

[70]  Ann Darnton,et al.  Repeat after me , 2001, Nature.

[71]  A. Graul,et al.  The year's new drugs & biologics, 2013: Part I. , 2014, Drugs of today.

[72]  Antony J Williams,et al.  Internet-based tools for communication and collaboration in chemistry. , 2008, Drug discovery today.

[73]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[74]  Paul Flicek,et al.  The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data , 2016, Nucleic Acids Res..

[75]  Russ B. Altman,et al.  PharmGKB: the Pharmacogenetics Knowledge Base , 2002, Nucleic Acids Res..

[76]  Zhiyong Lu,et al.  A new method for computational drug repositioning using drug pairwise similarity , 2012, 2012 IEEE International Conference on Bioinformatics and Biomedicine.

[77]  J. Scannell,et al.  Diagnosing the decline in pharmaceutical R&D efficiency , 2012, Nature Reviews Drug Discovery.

[78]  Jacob K. Asiedu,et al.  The Drug Repurposing Hub: a next-generation drug library and information resource , 2017, Nature Medicine.

[79]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[80]  Chirag J. Patel,et al.  A review of validation strategies for computational drug repositioning , 2016, Briefings Bioinform..

[81]  Wen Hwa Lee,et al.  Establishing a reliable framework for harnessing the creative power of the scientific crowd , 2017, PLoS biology.

[82]  Fabrizio Giordanetto,et al.  The European lead factory—an experiment in collaborative drug discovery , 2016, Journal of Medicines Development Sciences.

[83]  Günter Klambauer,et al.  DeepTox: Toxicity Prediction using Deep Learning , 2016, Front. Environ. Sci..

[84]  Csaba Szabo,et al.  Inventing new therapies without reinventing the wheel: the power of drug repurposing , 2018, British journal of pharmacology.

[85]  K. Sirotkin,et al.  The NCBI dbGaP database of genotypes and phenotypes , 2007, Nature Genetics.

[86]  Jing Chen,et al.  Unsupervised gene expression analyses identify IPF-severity correlated signatures, associated genes and biomarkers , 2017, BMC Pulmonary Medicine.

[87]  Bruce L. Booth,et al.  Opinion: Prospects for productivity , 2004, Nature Reviews Drug Discovery.

[88]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..

[89]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[90]  Sergey Plis,et al.  Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data. , 2016, Molecular pharmaceutics.

[91]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[92]  C. Mattingly,et al.  The Comparative Toxicogenomics Database (CTD). , 2003, Environmental health perspectives.

[93]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[94]  W. Strittmatter,et al.  Old Drug, New Hope for Alzheimer's Disease , 2012, Science.

[95]  Eric Lonstein,et al.  Prize-based contests can provide solutions to computational biology problems , 2013, Nature Biotechnology.

[96]  Michael R. Wade,et al.  A Comprehensive Review and Synthesis of Open Source Research , 2010, J. Assoc. Inf. Syst..

[97]  Hilmar Lapp,et al.  Open source tools and toolkits for bioinformatics: significance, and where are we? , 2006, Briefings Bioinform..

[98]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[99]  X. Chen,et al.  TTD: Therapeutic Target Database , 2002, Nucleic Acids Res..

[100]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[101]  Sepp Hochreiter,et al.  Toxicity Prediction using Deep Learning , 2015, ArXiv.

[102]  Tudor I. Oprea,et al.  DrugCentral: online drug compendium , 2016, Nucleic Acids Res..

[103]  Kathleen M Jagodnik,et al.  Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd , 2016, Nature Communications.

[104]  A J Coyle,et al.  Building a New Biomedical Ecosystem: Pfizer's Centers for Therapeutic Innovation , 2013, Clinical pharmacology and therapeutics.

[105]  S. Papapetropoulos,et al.  Drug repurposing from the perspective of pharmaceutical companies , 2018, British journal of pharmacology.

[106]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[107]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[108]  Monika Lessl,et al.  Grants4Targets: an open innovation initiative to foster drug discovery collaborations , 2014, Nature Reviews Drug Discovery.

[109]  B. Munos,et al.  Can Open‐Source Drug R&D Repower Pharmaceutical Innovation? , 2010, Clinical pharmacology and therapeutics.

[110]  O. Stegle,et al.  Deep learning for computational biology , 2016, Molecular systems biology.

[111]  Youngmi Yoon,et al.  A Network-Based Classification Model for Deriving Novel Drug-Disease Associations and Assessing Their Molecular Actions , 2014, PloS one.

[112]  Gautier Koscielny,et al.  Open Targets: a platform for therapeutic target identification and validation , 2016, Nucleic Acids Res..

[113]  Chuang Liu,et al.  Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference , 2012, PLoS Comput. Biol..

[114]  Stephen T. C. Wong,et al.  A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. , 2012, Cancer research.

[115]  Laleh Soltan Ghoraie,et al.  A review of connectivity map and computational approaches in pharmacogenomics , 2017, Briefings Bioinform..

[116]  Ian A. Watson,et al.  Open Innovation Drug Discovery (OIDD): a potential path to novel therapeutic chemical space. , 2014, Current topics in medicinal chemistry.

[117]  Martin Mozina,et al.  Orange: data mining toolbox in python , 2013, J. Mach. Learn. Res..

[118]  Shahin Akhondzadeh The Importance of Clinical Trials in Drug Development , 2016, Avicenna journal of medical biotechnology.

[119]  Allison P. Heath,et al.  Toward a Shared Vision for Cancer Genomic Data. , 2016, The New England journal of medicine.

[120]  Jian Peng,et al.  A Network Integration Approach for Drug-Target Interaction Prediction and Computational Drug Repositioning from Heterogeneous Information , 2017, RECOMB 2017.

[121]  J. Skolnick,et al.  Comprehensive prediction of drug-protein interactions and side effects for the human proteome , 2015, Scientific Reports.

[122]  Philip E. Bourne,et al.  PROMISCUOUS: a database for network-based drug-repositioning , 2010, Nucleic Acids Res..

[123]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[124]  Alexander A. Morgan,et al.  Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data , 2011, Science Translational Medicine.

[125]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[126]  M J Rodman,et al.  The year's new drugs. , 1980, RN.

[127]  Doris Berger,et al.  International Cancer Genome Consortium , 2013, Im Focus Onkologie.

[128]  Egon L. Willighagen,et al.  The Chemistry Development Kit (CDK): An Open-Source Java Library for Chemo-and Bioinformatics , 2003, J. Chem. Inf. Comput. Sci..

[129]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[130]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[131]  Lydia Ng,et al.  The Allen Brain Atlas , 2014 .

[132]  Zhiyong Lu,et al.  A survey of current trends in computational drug repositioning , 2016, Briefings Bioinform..

[133]  Cheng Zhu,et al.  Drug repositioning for orphan diseases , 2011, Briefings Bioinform..

[134]  Adam A. Margolin,et al.  Systematic Analysis of Challenge-Driven Improvements in Molecular Prognostic Models for Breast Cancer , 2013, Science Translational Medicine.

[135]  T. Ashburn,et al.  Drug repositioning: identifying and developing new uses for existing drugs , 2004, Nature Reviews Drug Discovery.

[136]  Laleh Soltan Ghoraie,et al.  A review of connectivity map and computational approaches in pharmacogenomics , 2017, Briefings Bioinform..

[137]  Ben Hamner,et al.  Crowd computing: using competitive dynamics to develop and refine highly predictive models. , 2013, Drug discovery today.

[138]  Syed Haider,et al.  International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data , 2011, Database J. Biol. Databases Curation.

[139]  Pankaj Agarwal,et al.  Systematic Drug Repositioning Based on Clinical Side-Effects , 2011, PloS one.

[140]  Dexter Hadley,et al.  Systematic integration of biomedical knowledge prioritizes drugs for repurposing , 2017, bioRxiv.

[141]  Wen Hwa Lee,et al.  Open Access Target Validation Is a More Efficient Way to Accelerate Drug Discovery , 2015, PLoS biology.

[142]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[143]  Hao Ye,et al.  Construction of Drug Network Based on Side Effects and Its Application for Drug Repositioning , 2014, PloS one.

[144]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[145]  Chao Wu,et al.  Computational drug repositioning through heterogeneous network clustering , 2013, BMC Systems Biology.

[146]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[147]  Marc Hafner,et al.  L1000CDS2: LINCS L1000 characteristic direction signatures search engine , 2016, npj Systems Biology and Applications.

[148]  Monya Baker,et al.  Irreproducible biology research costs put at $28 billion per year , 2015, Nature.

[149]  G. Tseng,et al.  Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders , 2014, Genes, brain, and behavior.

[150]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[151]  Charles C. Persinger,et al.  How to improve R&D productivity: the pharmaceutical industry's grand challenge , 2010, Nature Reviews Drug Discovery.

[152]  R. Peng Reproducible Research in Computational Science , 2011, Science.

[153]  Dan Wang,et al.  Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources , 2015, Bioinform..

[154]  F. Iorio,et al.  Transcriptional data: a new gateway to drug repositioning? , 2013, Drug discovery today.

[155]  Pierre Tufféry,et al.  Frog2: Efficient 3D conformation ensemble generator for small compounds , 2010, Nucleic Acids Res..

[156]  Karthik Ram,et al.  Git can facilitate greater reproducibility and increased transparency in science , 2013, Source Code for Biology and Medicine.

[157]  Dominique Douguet,et al.  e-LEA3D: a computational-aided drug design web server , 2010, Nucleic Acids Res..

[158]  D. Altshuler,et al.  Validating therapeutic targets through human genetics , 2013, Nature Reviews Drug Discovery.

[159]  Peer Bork,et al.  The SIDER database of drugs and side effects , 2015, Nucleic Acids Res..

[160]  Lydia Ng,et al.  Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system , 2012, Nucleic Acids Res..

[161]  Shiwen Zhao,et al.  Network-Based Relating Pharmacological and Genomic Spaces for Drug Target Identification , 2010, PloS one.

[162]  Kathleen M Jagodnik,et al.  Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses , 2018, Scientific Data.