Modeling Partial Knowledge on Multiple‐Choice Items Using Elimination Testing

[1]  Clyde H. Coombs,et al.  The Assessment of Partial Knowledge1 , 1956 .

[2]  T. Laet,et al.  Elimination Scoring Versus Correction for Guessing: A Simulation Study , 2017 .

[3]  R. Frary The Effect of Misinformation, Partial Information, and Guessing on Expected Multiple-Choice Test Item Scores , 1980 .

[4]  E. Lindquist,et al.  Some Notes on Corrections for Guessing and Related Problems , 2015 .

[5]  M. Valcke,et al.  Scoring methods for multiple choice assessment in higher education – Is it still a matter of number right scoring or negative marking? , 2013 .

[6]  Jimmy de la Torre,et al.  A Cognitive Diagnosis Model for Cognitively Based Multiple-Choice Options. , 2009 .

[7]  J. C. Arnold,et al.  On Scoring Multiple Choice Exams Allowing for Partial Knowledge , 1970 .

[8]  David A. Bradbard,et al.  An Alternate Multiple-Choice Scoring Procedure in a Macroeconomics Course , 2004 .

[9]  María Paz Espinosa,et al.  Optimal Correction for Guessing in Multiple-Choice Tests , 2010 .

[10]  John Schmid,et al.  Some Modifications of the Multiple-Choice Item , 1953 .

[11]  Owen Bodger,et al.  Negatively-Marked MCQ Assessments That Reward Partial Knowledge Do Not Introduce Gender Bias Yet Increase Student Performance and Satisfaction and Reduce Anxiety , 2013, PloS one.

[12]  R. Philip Chalmers,et al.  mirt: A Multidimensional Item Response Theory Package for the R Environment , 2012 .

[13]  James E. Corter,et al.  Diagnosis of Subtraction Bugs Using Bayesian Networks , 2011 .

[14]  D. Budescu,et al.  Analyzing Test-Taking Behavior: Decision Theory Meets Psychometric Theory , 2015, Psychometrika.

[15]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[16]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[17]  Yaacov Schul,et al.  Elimination and inclusion procedures in judgment. , 1997 .

[18]  D. Budescu,et al.  Decision making under internal uncertainty: the case of multiple-choice tests with different scoring rules. , 2003, Acta psychologica.

[19]  Martin Bush,et al.  A Multiple Choice Test that Rewards Partial Knowledge , 2001 .

[20]  Elimination testing with adapted scoring reduces guessing and anxiety in multiple-choice assessments, but does not increase grade average in comparison with negative marking , 2018, PloS one.

[21]  J. D. L. Torre,et al.  DINA Model and Parameter Estimation: A Didactic , 2009 .

[22]  Louis V. DiBello,et al.  A Family of Generalized Diagnostic Classification Models for Multiple Choice Option-Based Scoring , 2015, Applied psychological measurement.

[23]  Mark Wilson,et al.  The partial credit model and null categories , 1993 .

[24]  Robert B. Frary,et al.  Formula Scoring of Multiple‐Choice Tests (Correction for Guessing) , 1988 .

[25]  B. deFinetti,et al.  METHODS FOR DISCRIMINATING LEVELS OF PARTIAL KNOWLEDGE CONCERNING A TEST ITEM. , 1965, The British journal of mathematical and statistical psychology.

[26]  Mark R. Wilson,et al.  The Ordered artition Model: An Extension of the Partial Credit Model , 1992 .

[27]  G. Masters A rasch model for partial credit scoring , 1982 .

[28]  David Thissen,et al.  A response model for multiple choice items , 1984 .

[29]  David V. Budescu,et al.  A Comparative Study of Measures of Partial Knowledge in Multiple-Choice Tests , 1997 .

[30]  Pei-Chun Lin,et al.  Measures of Partial Knowledge and Unexpected Responses in Multiple-Choice Tests , 2007, J. Educ. Technol. Soc..

[31]  An Option-Based Partial Credit Item Response Model , 2015 .

[32]  H. Huynh On equivalence between a partial credit item and a set of independent Rasch binary items , 1994 .

[33]  D. Budescu,et al.  To Guess or Not to Guess: A Decision‐Theoretic View of Formula Scoring , 1993 .