A general theory of self-similarity

Consider a self-similar space X. A typical situation is that X looks like several copies of itself glued to several copies of another space Y, and Y looks like several copies of itself glued to several copies of X, or the same kind of thing with more than two spaces. Thus, the self-similarity of X is described by a system of simultaneous equations. Here I formalize this idea and the notion of a `universal solution' of such a system. I determine exactly when a system has a universal solution and, when one does exist, construct it. A sequel (math.DS/0411345) contains further results and examples, and an introductory article (math.DS/0411343) gives an overview.

[1]  S. Lane Categories for the Working Mathematician , 1971 .

[2]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[3]  André Joyal,et al.  Strong stacks and classifying spaces , 1991 .

[4]  Stephen Lack,et al.  A classification of accessible categories , 2002 .

[5]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[6]  A. Grothendieck,et al.  Théorie des Topos et Cohomologie Etale des Schémas , 1972 .

[7]  J. Cheney,et al.  A sequent calculus for nominal logic , 2004, LICS 2004.

[8]  T. Leinster A survey of definitions of -category. , 2002 .

[9]  Seven trees in one , 1994, math/9405205.

[10]  J. Lambek A fixpoint theorem for complete categories , 1968 .

[11]  Peter H. Richter,et al.  The Beauty of Fractals , 1988, 1988.

[12]  Jiri Velebil,et al.  Final coalgebras in accessible categories , 2011, Math. Struct. Comput. Sci..

[13]  S. Krantz Fractal geometry , 1989 .

[14]  D. König Sur les correspondances multivoques des ensembles , 2022 .

[15]  Tom Leinster,et al.  Objects of categories as complex numbers , 2002 .

[16]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[17]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[18]  Peter T. Johnstone,et al.  Connected limits, familial representability and Artin glueing , 1995, Mathematical Structures in Computer Science.

[19]  Martín Hötzel Escardó,et al.  A universal characterization of the closed Euclidean interval , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[20]  Tom Leinster A Survey of Definitions of n-Category , 2001 .

[21]  F. Borceux Handbook Of Categorical Algebra 1 Basic Category Theory , 2008 .

[22]  Tom Leinster The Euler characteristic of a category , 2006 .

[23]  P. Ageron Catégories accessibles à produits fibrés , 1996 .

[24]  Stephen Lack,et al.  Homotopy-theoretic aspects of 2-monads , 2006 .

[25]  Peter Freyd Algebraic real analysis. , 2008 .

[26]  Tom Leinster General self-similarity: an overview , 2004 .

[27]  Vertauschbarkeit von Limites und Colimites , 1984 .

[28]  Elias Gabriel Minian Λ-Cofibration Categories and the Homotopy Categories of Global Actions and Simplicial Complexes , 2002, Appl. Categorical Struct..

[29]  J. Bell STONE SPACES (Cambridge Studies in Advanced Mathematics 3) , 1987 .

[30]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[31]  M. Saia,et al.  Real and Complex Singularities , 2008 .

[32]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[33]  J. Milnor Dynamics in one complex variable , 2000 .

[34]  P. Freyd Algebraically complete categories , 1991 .

[35]  R. Ho Algebraic Topology , 2022 .

[36]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .