A spatially adaptive hierarchical stochastic model for non-rigid image registration

In this paper, we propose a method for non-rigid image registration based on a spatially adaptive stochastic model. A smoothness constraint is imposed on the deformation field between the two images which is assumed to be a random variable following a Gaussian distribution, conditioned on the observations and maximum a posteriori (MAP) estimation is employed to evaluate the model parameters. Furthermore, the model is enriched by considering the deformation field to be spatially adaptive by assuming different density parameters for each image location. These parameters are assumed random variables generated by a Gamma distribution, which is conjugate to the Gaussian, leading to a model that can be estimated. Numerical experiments are presented that demonstrate the advantages of this model.

[1]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[2]  K. Mardia,et al.  A penalized likelihood approach to image warping , 2001 .

[3]  Michael I. Miller,et al.  Large deformation diffeomorphic metric mapping of vector fields , 2005, IEEE Transactions on Medical Imaging.

[4]  Karl Rohr,et al.  Radial basis functions with compact support for elastic registration of medical images , 2001, Image Vis. Comput..

[5]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[6]  T. Mackie,et al.  Fast free-form deformable registration via calculus of variations , 2004, Physics in medicine and biology.

[7]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[8]  Nikolas P. Galatsanos,et al.  Bayesian Restoration Using a New Nonstationary Edge-Preserving Image Prior , 2006, IEEE Transactions on Image Processing.

[9]  Aristidis Likas,et al.  BAYESIAN RESTORATION USING A NEW HIERARCHICAL DIRECTIONAL CONTINUOUS EDGE IMAGE PRIOR By , 2005 .

[10]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[11]  Fabrice Heitz,et al.  Topology preserving deformable image matching using constrained hierarchical parametric models , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[12]  Frédéric J. P. Richard,et al.  A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences , 2009, Stat. Comput..

[13]  Takeo Kanade,et al.  Image Registration Using Wavelet-Based Motion Model , 2000, International Journal of Computer Vision.

[14]  Stephen R. Marsland,et al.  Constructing diffeomorphic representations for the groupwise analysis of nonrigid registrations of medical images , 2004, IEEE Transactions on Medical Imaging.

[15]  Christos Davatzikos,et al.  Using a deformable surface model to obtain a shape representation of the cortex , 1996, IEEE Trans. Medical Imaging.

[16]  Guy Demoment,et al.  Image reconstruction and restoration: overview of common estimation structures and problems , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[18]  Yali Amit,et al.  A Nonlinear Variational Problem for Image Matching , 1994, SIAM J. Sci. Comput..

[19]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..