Spectral characteristics preserving image fusion based on Fourier domain filtering

Data fusion methods are usually classified into three levels: pixel level (ikonic), feature level (symbolic) and knowledge or decision level. Here, we will focus on the development of ikonic techniques for image fusion. Image transforms such as the Intensity-Hue-Saturation (IHS) or Principal Component (PC) transform are widely used to fuse panchromatic images of high spatial resolution with multispectral images of lower resolution. These techniques create multispectral images of higher spatial resolution but usually at the cost that these transforms do not preserve the original color or spectral characteristics of the input image data. In this study, a new method for image fusion will be presented that is based on filtering in the Fourier domain. This method preserves the spectral characteristics of the lower resolution mul-tispectral images. Examples are presented for SPOT and Ikonos panchromatic images fused with Landsat TM and Iko-nos multispectral data. Comparison with existing fusion techniques such as IHS, PC or Brovey transform prove the su-periority of the new method. While in principle based on the IHS transform (which usually only works for three bands), the method is extended to any arbitrary number of spectral bands. Using this approach, this method can be applied to sharpen hyperspectral images without changing their spectral behavior.

[1]  V. K. Shettigara,et al.  A generalized component substitution technique for spatial enhancement of multispectral images using , 1992 .

[2]  D. Yocky Image merging and data fusion by means of the discrete two-dimensional wavelet transform , 1995 .

[3]  J. G. Liu,et al.  Integrated use of Landsat TM and SPOT panchromatic imagery for landslide mapping: case histories from southeast Spain , 1998, Geological Society, London, Engineering Geology Special Publications.

[4]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Geoffrey Edwards,et al.  Data fusion—from a logic perspective with a view to implementation , 2004, Int. J. Geogr. Inf. Sci..

[6]  川村 宏,et al.  "Space at the Service of our Environment"シンポジウム報告 , 1993 .

[7]  S. Sides,et al.  Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic , 1991 .

[8]  L. Wald,et al.  Fusion of high spatial and spectral resolution images : The ARSIS concept and its implementation , 2000 .

[9]  J. Schott,et al.  Resolution enhancement of multispectral image data to improve classification accuracy , 1993 .

[10]  M. Ehlers,et al.  Comparative evaluations of the geodetic accuracy and cartographic potential of Landsat-4 and Landsat-5 Thematic Mapper image data , 1985 .

[11]  W. Shi,et al.  Multi-band wavelet for fusing SPOT panchromatic and multispectral images , 2003 .

[12]  D. Mouat,et al.  Remote sensing techniques in the analysis of change detection , 1993 .

[13]  Marc Mangolini,et al.  Apport de la fusion d'images satellitaires multicapteurs au niveau pixel en télédétection et photo-interprétation , 1994 .

[14]  A. R. Harrison,et al.  Standardized principal components , 1985 .

[15]  Karl-Heinz Prof Dr Ing Marek,et al.  Preliminary results of the comparative analysis of ERS-1 and ALMAZ-1 SAR data , 1994 .

[16]  G. MallatS. A Theory for Multiresolution Signal Decomposition , 1989 .

[17]  Lucien Wald,et al.  Definitions and terms of reference in data fusion , 1999 .

[18]  Yan Na,et al.  Imaging mechanism based remote sensing image fusion with multi-wavelet transform , 2004, Proceedings 7th International Conference on Signal Processing, 2004. Proceedings. ICSP '04. 2004..

[19]  L. Wald,et al.  Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images , 1997 .

[20]  A. L. Zobrist,et al.  Integration of Landsat, Seasat, and other geo-data sources , 1979 .

[21]  Manfred Ehlers,et al.  Multisensor image fusion techniques in remote sensing , 1991 .

[22]  John C. Russ,et al.  The Image Processing Handbook , 2016, Microscopy and Microanalysis.

[23]  John A. Richards,et al.  Thematic mapping from multitemporal image data using the principal components transformation , 1984 .

[24]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[25]  A. H. J. M. Pellemans,et al.  MERGING MULTISPECTRAL AND PANCHROMATIC SPOT IMAGES WITH RESPECT TO THE RADIOMETRIC PROPERTIES OF THE SENSOR , 1993 .

[26]  E. LeDrew,et al.  Application of principal components analysis to change detection , 1987 .

[27]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[28]  W. J. Carper,et al.  The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data , 1990 .

[29]  J. Zhou,et al.  A wavelet transform method to merge Landsat TM and SPOT panchromatic data , 1998 .

[30]  D Pradines Improving Spot Images Size And Multispectral Resolution , 1986, Other Conferences.

[31]  Christine Pohl,et al.  The 1995 flood in The Netherlands monitored from space : a multi-sensor approach , 1995 .

[32]  Te-Ming Tu,et al.  A new look at IHS-like image fusion methods , 2001, Inf. Fusion.

[33]  Robert Bindschadler,et al.  Multi-spectral analysis of ice sheets using co-registered SAR and TM imagery , 1992 .

[34]  B. S. Manjunath,et al.  Multisensor Image Fusion Using the Wavelet Transform , 1995, CVGIP Graph. Model. Image Process..

[35]  P. Chavez Digital merging of Landsat TM and digitized NHAP data for 1: 24,000-scale image mapping((National Hi , 1986 .

[36]  Manfred Ehlers,et al.  Remote sensing for GIS applications: new sensors and analysis methods , 2004, SPIE Remote Sensing.

[37]  J. Chorowicz,et al.  Geological mapping and detection of oblique extensional structures in the Kenyan Rift Valley with a SPOT/Landsat-TM datamerge , 1993 .

[38]  J. Rolet,et al.  Merging seasat and SPOT imagery for the study of geological structures in a temperate agricultural region , 1993 .

[39]  D. Yocky Multiresolution wavelet decomposition image merger of landsat thematic mapper and SPOT panchromatic data , 1996 .

[40]  Thierry Ranchin,et al.  Benefit of the future SPOT-5 and of data fusion to urban roads mapping , 1998 .

[41]  Jeff R. Harris,et al.  IHS transform for the integration of radar imagery with other remotely sensed data , 1990 .

[42]  D. N. Grasso Applications of the IHS color transformation for 1:24,000-scale geologic mapping : a low cost SPOT alternative , 1993 .

[43]  J. Rolet,et al.  Extraction of spectral information from Landsat TM data and merger with SPOT panchromatic imagery: a contribution to the study of geological structures , 1993 .

[44]  T. Farr,et al.  Geologic interpretation from composited radar and Landsat imagery , 1979 .

[45]  M. Rast,et al.  Comparative digital analysis of Seasat-SAR and Landsat-TM data for Iceland , 1991 .

[46]  M. Daily,et al.  Hue-saturation-intensity split-spectrum processing of Seasat radar imagery , 1983 .

[47]  Wayne Niblack,et al.  An introduction to digital image processing , 1986 .

[48]  Yun Zhang Information system for monitoring the urban environment based on satellite remote sensing: Shanghai as an example , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[49]  J. C. Price,et al.  Combining panchromatic and multispectral imagery dual resolution satellite instruments , 1987 .

[50]  Xavier Otazu,et al.  Multiresolution-based image fusion with additive wavelet decomposition , 1999, IEEE Trans. Geosci. Remote. Sens..

[51]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[52]  Thierry Ranchin,et al.  The wavelet transform for the analysis of remotely sensed images , 1993 .