Effective Minimization of Acyclic Phase-Type Representations

Acyclic phase-type distributions are phase-type distributions with triangular matrix representations. They constitute a versatile modelling tool, since they (1) can serve as approximations to any continuous distributions, and (2) exhibit special properties and characteristics, which usually result in some ease in analysis. The size of the matrix representation has a strong influence on computational efforts needed when analyzing these distributions. This representation, however, is not unique, and two representations of the same distribution can differ drastically in size. This paper proposes an effective procedure to aggregate the size of the matrix representation without altering the distribution.

[1]  A. Cumani On the canonical representation of homogeneous markov processes modelling failure - time distributions , 1982 .

[2]  Marcel F. Neuts,et al.  Matrix-geometric solutions in stochastic models - an algorithmic approach , 1982 .

[3]  Jane Hillston,et al.  A compositional approach to performance modelling , 1996 .

[4]  C. O'Cinneide On non-uniqueness of representations of phase-type distributions , 1989 .

[5]  C. O'Cinneide Characterization of phase-type distributions , 1990 .

[6]  Srinivas R. Chakravarthy A Stochastic Model for a Computer Communication Network Node with Phase Type Timeout Periods , 1991 .

[7]  Colm Art O'Cinneide,et al.  Phase-type distributions and invariant polytopes , 1991, Advances in Applied Probability.

[8]  Søren Asmussen,et al.  Phase-Type Representations in Random Walk and Queueing Problems , 1992 .

[9]  Salvatore J. Bavuso,et al.  Dynamic fault-tree models for fault-tolerant computer systems , 1992 .

[10]  Colm Art O'Cinneide,et al.  Triangular order of triangular phase-type distributions ∗ , 1993 .

[11]  P. Buchholz Exact and ordinary lumpability in finite Markov chains , 1994, Journal of Applied Probability.

[12]  Hiromitsu Kumamoto,et al.  Probabilistic Risk Assessment , 1996 .

[13]  Christel Baier,et al.  Weak Bisimulation for Fully Probabilistic Processes , 1997, FBT.

[14]  David Coppit,et al.  Combining various solution techniques for dynamic fault tree analysis of computer systems , 1998, Proceedings Third IEEE International High-Assurance Systems Engineering Symposium (Cat. No.98EX231).

[15]  Srinivas R. Chakravarthy,et al.  A k-out-of-n reliability system with an unreliable server and phase type repairs and services: the (N,T) policy , 2001 .

[16]  C. Commault,et al.  A generic property of phase-type representations , 2002, Journal of Applied Probability.

[17]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[18]  Mario Bravetti Revisiting Interactive Markov Chains , 2002, Electron. Notes Theor. Comput. Sci..

[19]  Ramin Sadre,et al.  Fitting World Wide Web request traces with the EM-algorithim , 2001, SPIE ITCom.

[20]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[21]  Christel Baier,et al.  Comparative branching-time semantics for Markov chains , 2005, Inf. Comput..

[22]  Qi-Ming He,et al.  Spectral Polynomial Algorithms for Computing Bi-Diagonal Representations for Phase Type Distributions and Matrix-Exponential Distributions , 2006 .

[23]  Mariëlle Stoelinga,et al.  A Compositional Semantics for Dynamic Fault Trees in Terms of Interactive Markov Chains , 2007, ATVA.

[24]  Reza Pulungan,et al.  The Minimal Representation of the Maximum of Erlang Distributions , 2011, Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen.

[25]  Qi-Ming He,et al.  An Algorithm for Computing Minimal % Coxian Representations , 2008, INFORMS J. Comput..

[26]  Nigel G. Bean,et al.  Characterization of Matrix-Exponential Distributions , 2008 .