Tuning of 2D rod-type photonic crystal cavity for optical modulation and impact sensing

We propose a novel way of mechanical perturbation of photonic crystal cavities for on-chip applications. We utilize the equivalence of the 2D photonic crystals with perfect electric conductor (PEC) boundary conditions to the infinite height 3D counterparts for rod type photonic crystals. Designed structures are sandwiched with PEC boundaries above and below and the perturbation of the cavity structures is demonstrated by changing the height of PEC boundary. Once a defect filled with air is introduced, the metallic boundary conditions is disturbed and the effective mode permittivity changes leading to a tuned optical properties of the structures. Devices utilizing this perturbation are designed for telecom wavelengths and PEC boundaries are replaced by gold plates during implementation. For 10 nm gold plate displacement, two different cavity structures showed a 21.5 nm and 26 nm shift in the resonant wavelength. Optical modulation with a 1.3 MHz maximum modulation frequency with a maximum power consumption of 36.81 nW and impact sensing with 20 μs response time (much faster compared to the commercially available ones) are shown to be possible.

[1]  S. Kocaman,et al.  Stability Formulation for Integrated Opto-mechanic Phase Shifters , 2018, Scientific Reports.

[2]  C. Huyghebaert,et al.  Graphene–silicon phase modulators with gigahertz bandwidth , 2017, Nature Photonics.

[3]  David A. Scrymgeour,et al.  Electro-optic control of the superprism effect in photonic crystals , 2003 .

[4]  T. Yamane,et al.  Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method , 2002 .

[5]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[6]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[7]  Kazuhiro Hane,et al.  Time Response of a Microelectromechanical Silicon Photonic Waveguide Coupler Switch , 2014, IEEE Photonics Technology Letters.

[8]  Kerry J. Vahala,et al.  Coherent mixing of mechanical excitations in nano-optomechanical structures , 2009, 0908.1128.

[9]  Carsten Sönnichsen,et al.  Plasmon resonances in large noble-metal clusters , 2002 .

[10]  K. Vahala,et al.  Optomechanical crystals , 2009, Nature.

[11]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2008, Nature.

[12]  Wolfgang Freude,et al.  Silicon-Organic Hybrid (SOH) Mach-Zehnder Modulators for 100 Gbit/s on-off Keying , 2017, Scientific Reports.

[13]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[14]  Naomi J. Halas,et al.  Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles , 2004 .

[15]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[16]  D. Van Thourhout,et al.  Ultracompact Phase Modulator Based on a Cascade of NEMS-Operated Slot Waveguides Fabricated in Silicon-on-Insulator , 2012, IEEE Photonics Journal.

[17]  Franck Chollet,et al.  Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review , 2016, Micromachines.

[18]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[19]  R. Ridder,et al.  Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever. , 2011, Optics express.

[20]  Resonator-Based Silicon Electro-Optic Modulator with Low Power Consumption , 2009 .

[21]  S. Bhave,et al.  Electrostatic actuation of silicon optomechanical resonators. , 2010, Optics express.

[22]  K. Hane,et al.  An analytical coupling coefficient for MEMS tunable silicon nanowire waveguide coupler devices , 2013 .

[23]  Carsten Sönnichsen,et al.  Plasmons in metal nanostructures , 2001 .

[24]  Xiang Guo,et al.  Integrated optomechanical single-photon frequency shifter , 2016, Nature Photonics.

[25]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[26]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[27]  V. Sudhir,et al.  Measurement-based control of a mechanical oscillator at its thermal decoherence rate , 2014, Nature.

[28]  Yuichi Sato,et al.  Fabrication of Silicon Microdisk Resonators with Movable Waveguides for Control of Power Coupling Ratio , 2013 .

[29]  M. Wu,et al.  MEMS-actuated microdisk resonators with variable power coupling ratios , 2005, IEEE Photonics Technology Letters.

[30]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[31]  Mike S Ferraro,et al.  Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. , 2007, Optics express.

[32]  G. Contestabile,et al.  Graphene Phase Modulator , 2017, 1704.01525.

[33]  S. Kocaman,et al.  High-Q Slot-Mode Photonic Crystal Nanobeam Cavity Biosensor With Optomechanically Enhanced Sensitivity , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Kenji Watanabe,et al.  Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons , 2017, Nature Photonics.

[35]  D. Czaplewski,et al.  Compact nanomechanical plasmonic phase modulators , 2014, Nature Photonics.

[36]  David A B Miller,et al.  Energy consumption in optical modulators for interconnects. , 2012, Optics express.

[37]  Novel optical gyroscope: proof of principle demonstration and future scope , 2016, Scientific reports.

[38]  S. Deleglise,et al.  Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2012, CLEO 2012.

[39]  Kartik Srinivasan,et al.  Coherent coupling between radiofrequency, optical and acoustic waves in piezo-optomechanical circuits , 2015, Nature Photonics.

[40]  Hiroshi Fukuda,et al.  Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator , 2017, Nature Photonics.

[41]  G. Guo,et al.  Broadband opto-mechanical phase shifter for photonic integrated circuits , 2012, 1202.3239.

[42]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[43]  Frederic Boeuf,et al.  Efficient low-loss InGaAsP/Si hybrid MOS optical modulator , 2017, Nature Photonics.

[44]  Krystyna Kolwas,et al.  Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres , 2015, Plasmonics.

[45]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[46]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[47]  H. Tang,et al.  Broadband nanoelectromechanical phase shifting of light on a chip , 2013, 1312.2454.

[48]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[49]  Ming C. Wu,et al.  Tunable coupling regimes of silicon microdisk resonators using MEMS actuators. , 2006, Optics express.

[50]  V. Shalaev,et al.  1 Supplementary Information : Low loss Plasmon-assisted electro-optic modulator , 2018 .

[51]  Yu Yu,et al.  Silicon Integrated Interferometric Optical Gyroscope , 2018, Scientific Reports.

[52]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[53]  W. Pernice,et al.  Tunable bipolar optical interactions between guided lightwaves , 2009, 0903.5117.

[54]  Mitsuru Takenaka,et al.  Strain-induced enhancement of plasma dispersion effect and free-carrier absorption in SiGe optical modulators , 2013, Scientific Reports.

[55]  Miles H. Anderson,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[56]  Zhipei Sun,et al.  Optical modulators with 2 D layered materials , 2016 .

[57]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[58]  Wei Jiang,et al.  80-micron interaction length silicon photonic crystal waveguide modulator , 2005 .

[59]  羽根 一博,et al.  Submicron silicon waveguide optical switch driven by microelectromechanical actuator , 2008 .

[60]  Jian Wang,et al.  Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator , 2016, Scientific Reports.

[61]  Alperen Govdeli,et al.  Integrated Optical Modulator Based on Transition between Photonic Bands , 2018, Scientific Reports.

[62]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[63]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[64]  Kazuhiro Hane,et al.  Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers , 2012, Light: Science & Applications.

[65]  M.C. Wu,et al.  Silicon Microtoroidal Resonators With Integrated MEMS Tunable Coupler , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  S. Schmid,et al.  Optical detection of radio waves through a nanomechanical transducer , 2013, Nature.

[67]  Yunjiang Rao,et al.  Gate-tunable frequency combs in graphene–nitride microresonators , 2018, Nature.

[68]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[69]  Jeremy B. Clark,et al.  Sideband cooling beyond the quantum backaction limit with squeezed light , 2016, Nature.

[70]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[71]  Kazuhiro Hane,et al.  Ultra-small silicon waveguide coupler switch using gap-variable mechanism. , 2011, Optics express.

[72]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.