Intersection Types for Light Affine Lambda Calculus

Light Affine Lambda Calculus is a term calculus for polynomial time computation ([K. Terui. Light affine lambda calculus and polytime strong normalization. In Proceedings of LICS'01, pages 209-220, 2001]). Some of the terms of Light Affine Lambda Calculus must however be regarded as errors. Intuitionistic Light Affine Logic (ILAL) types only terms without errors, but not all of them. We introduce two type assignment systems with intersection types : in the first one, typable pseudo-terms are exactly the terms without errors ; in the second one, they are exactly those that reduce to normal terms without errors.

[1]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[2]  Kazushige Terui,et al.  Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[3]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[4]  J. Krivine Lambda-calcul : types et modèles , 1990 .

[5]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[6]  Patrick Baillot,et al.  Soft lambda-Calculus: A Language for Polynomial Time Computation , 2004, FoSSaCS.

[7]  Luca Roversi A P-Time Completeness Proof for Light Logics , 1999, CSL.

[8]  Paola Giannini,et al.  Characterization of typings in polymorphic type discipline , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[9]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[10]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[11]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[12]  Mariangiola Dezani-Ciancaglini,et al.  An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..

[13]  Patrick Baillot Stratified coherence spaces: a denotational semantics for light linear logic , 2004, Theor. Comput. Sci..

[14]  Kazushige Terui Light Affine Set Theory: A Naive Set Theory of Polynomial Time , 2004, Stud Logica.