An adaptive system for modelling and simulation of electrical arc furnaces

Modelling and simulator development for electric arc furnaces (EAFs) are of significant importance in designing control systems and in performance optimisation of EAFs. This paper presents a method based on adaptive neuro-fuzzy inference systems (ANFIS) for modelling and simulating EAFs with the focus on the regulator loop that is used for positioning the electrodes. The effectiveness of the simulator is shown through experiments by comparing the simulator outputs with actual plant data, using the EAF of Gerdau Ameristeel Whitby (GAW) in Ontario, Canada.

[1]  Farrokh Janabi-Sharifi,et al.  Design of a self-adaptive fuzzy tension controller for tandem rolling , 2005, IEEE Transactions on Industrial Electronics.

[2]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control - design and stability analysis , 1994 .

[3]  Derek A. Linkens,et al.  Rule-base derivation for intensive care ventilator control using ANFIS , 2003, Artif. Intell. Medicine.

[4]  J. D. Lavers,et al.  Application of adaptive fuzzy logic systems to model electric arc furnaces , 1999, 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397).

[5]  Hirofumi Akagi,et al.  Instantaneous power theory and applications to power conditioning , 2007 .

[6]  Yoshua Bengio,et al.  Convergence Properties of the K-Means Algorithms , 1994, NIPS.

[7]  Tomás Gómez,et al.  Identification and modelling of a three phase arc furnace for voltage disturbance simulation , 1997 .

[8]  Tongxin Zheng,et al.  Effect of different arc furnace models on voltage distortion , 1998, 8th International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.98EX227).

[9]  Erik Sandberg,et al.  Scrap management by statistical evaluation of EAF process data , 2007 .

[10]  C. S. George Lee,et al.  Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems , 1994, IEEE Trans. Fuzzy Syst..

[11]  S. Himavathi,et al.  New membership functions for effective design and implementation of fuzzy systems , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[12]  M. Nyman,et al.  Modeling and control of an electric arc furnace using a feedforward artificial neural network , 1996 .

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  Isao Hayashi,et al.  NN-driven fuzzy reasoning , 1991, Int. J. Approx. Reason..

[15]  Ajith Abraham,et al.  Neuro Fuzzy Systems: Sate-of-the-Art Modeling Techniques , 2001, IWANN.

[16]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[17]  Y.F. Wang,et al.  Mitigation of Electric Arc Furnace Voltage Flicker Using Static Synchronous Compensator , 2006, 2006 CES/IEEE 5th International Power Electronics and Motion Control Conference.

[18]  Jyh-Shing Roger Jang,et al.  Self-learning fuzzy controllers based on temporal backpropagation , 1992, IEEE Trans. Neural Networks.

[19]  Hamid R. Berenji,et al.  Learning and tuning fuzzy logic controllers through reinforcements , 1992, IEEE Trans. Neural Networks.

[20]  J. D. Lavers,et al.  Application of radial basis function networks to model electric arc furnaces , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[21]  Farrokh Janabi-Sharifi A neuro-fuzzy system for looper tension control in rolling mills , 2005 .

[22]  Stephen A. Billings,et al.  Electric arc furnace modelling and control , 1979, Autom..

[23]  Martin T. Hagan,et al.  Neural network design , 1995 .

[24]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[25]  Ramon Nadira,et al.  Self-Adjusting Model Algorithmic Control of a Three-Phase Electric Arc Furnace , 1988, 1988 American Control Conference.

[26]  H. W. Kabisama Electrical Power Engineering , 1993 .

[27]  John Yen,et al.  Industrial Applications of Fuzzy Logic and Intelligent Systems , 1995 .

[28]  Adly A. Girgis,et al.  A new time domain voltage source model for an arc furnace using EMTP , 1996 .

[29]  George S. Fishman,et al.  Discrete-Event Simulation : Modeling, Programming, and Analysis , 2001 .

[30]  Francesco Palmieri,et al.  Optimal filtering algorithms for fast learning in feedforward neural networks , 1992, Neural Networks.

[31]  C. R. Taylor,et al.  Electric Furnace Steelmaking , 1985 .

[32]  J.D. Lavers,et al.  Nonlinear black-box modeling of electric arc furnace: an application of fuzzy logic systems , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[33]  R. Yager,et al.  Approximate Clustering Via the Mountain Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[34]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[35]  J. D. Lavers,et al.  On the use of recurrent neuro-fuzzy networks for predictive control , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[36]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[37]  Abdelhafid Zeghbib,et al.  ANFIS based modelling and control of non-linear systems : a tutorial , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[38]  W. E. Staib,et al.  The intelligent arc furnace controller: a neural network electrode position optimization system for the electric arc furnace , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[39]  J.-S.R. Jang,et al.  Input selection for ANFIS learning , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[40]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition , 1992 .

[41]  Hisao Ishibuchi,et al.  Adaptive fuzzy rule-based classification systems , 1996, IEEE Trans. Fuzzy Syst..

[42]  Elham B. Makram,et al.  An adaptive arc furnace model , 2000 .

[43]  Ian K. Craig,et al.  Economic evaluation and design of an electric arc furnace controller based on economic objectives , 2004 .

[44]  Andrzej Ordys,et al.  Modeling and simulation of EAF melt shop , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[45]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[46]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[47]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1993, IEEE Trans. Syst. Man Cybern..

[48]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..