Hamiltonian moving-particle semi-implicit (HMPS) method for incompressible fluid flows
暂无分享,去创建一个
[1] Oscar Gonzalez,et al. Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .
[2] Frederic A. Rasio. Particle Methods in Astrophysical Fluid Dynamics , 2000 .
[3] J. C. Simo,et al. The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .
[4] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[5] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .
[6] M. Ortiz,et al. Lagrangian finite element analysis of Newtonian fluid flows , 1998 .
[7] M. Lesieur,et al. New Trends in Large-Eddy Simulations of Turbulence , 1996 .
[8] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[9] L. Lucy. A numerical approach to the testing of the fission hypothesis. , 1977 .
[10] J. Monaghan,et al. Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .
[11] P. Morrison,et al. Hamiltonian description of the ideal fluid , 1998 .
[12] Wing Kam Liu,et al. Reproducing kernel particle methods , 1995 .
[13] Nobuatsu Tanaka. Hamiltonian Particle Dynamics, CIVA-Particle Method and Symplectic Upwind Scheme , 2001 .
[14] Y. Chikazawa,et al. Numerical Analysis of Three-dimensional Sloshing in an Elastic Cylindrical Tank using Moving Particle Semi-implicit Method , 2001 .
[15] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .
[16] Eugenio Oñate,et al. A Lagrangian meshless finite element method applied to fluid-structure interaction problems , 2003 .
[17] J. C. Simo,et al. Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .
[18] C. W. Hirt,et al. Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .
[19] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[20] R. Salmon,et al. Geophysical Fluid Dynamics , 2019, Classical Mechanics in Geophysical Fluid Dynamics.
[21] Sivakumar Kulasegaram,et al. Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems , 2004 .
[22] P. Moin,et al. Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .
[23] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[24] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[25] J. Monaghan,et al. Kernel estimates as a basis for general particle methods in hydrodynamics , 1982 .
[26] S. Koshizuka,et al. Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid , 1996 .
[27] R. Eatock Taylor,et al. Numerical wave tank based on a σ‐transformed finite element inviscid flow solver , 2003 .
[28] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[29] Jason Frank,et al. A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations , 2003 .
[30] Alistair G.L. Borthwick,et al. A PSEUDOSPECTRAL σ -TRANSFORMATION MODEL OF 2-D NONLINEAR WAVES , 1999 .
[31] P. Moin,et al. DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .
[32] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[33] R. Eatock Taylor,et al. Finite element analysis of two-dimensional non-linear transient water waves , 1994 .
[34] Oden,et al. An h-p adaptive method using clouds , 1996 .
[35] Yoshiaki Oka,et al. Numerical Analysis of Droplet Breakup Behavior using Particle Method , 2001 .
[36] Wing Kam Liu,et al. Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .
[37] Daniel J. Price,et al. Variational principles for relativistic smoothed particle hydrodynamics , 2001 .
[38] S. Koshizuka,et al. GENERALIZATION OF PHYSICAL COMPONENT BOUNDARY FITTED CO-ORDINATE (PCBFC) METHOD FOR THE ANALYSIS OF FREE-SURFACE FLOW , 1992 .
[39] Francis H. Harlow,et al. Numerical Study of Large‐Amplitude Free‐Surface Motions , 1966 .
[40] Eugenio Oñate,et al. The meshless finite element method , 2003 .
[41] B. Leimkuhler,et al. Symplectic Numerical Integrators in Constrained Hamiltonian Systems , 1994 .
[42] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[43] S. Koshizuka,et al. International Journal for Numerical Methods in Fluids Numerical Analysis of Breaking Waves Using the Moving Particle Semi-implicit Method , 2022 .
[44] Particle method for fluid and solid dynamics , 2001 .
[45] E. Oñate,et al. The particle finite element method. An overview , 2004 .
[46] Li,et al. Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .
[47] S. Koshizuka. A particle method for incompressible viscous flow with fluid fragmentation , 1995 .
[48] J. Monaghan. Smoothed particle hydrodynamics , 2005 .
[49] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[50] Harry Yserentant,et al. The Finite Mass Method , 2000, SIAM J. Numer. Anal..
[51] Huafeng Liu,et al. Meshfree Particle Methods , 2004 .
[52] T. Belytschko,et al. Element‐free Galerkin methods , 1994 .
[53] Yoshiaki Oka,et al. A particle-gridless hybrid method for incompressible flows , 1999 .