Theory of Stochastic Laplacian Growth

[1]  A. Abanov,et al.  Multi-cut solutions of Laplacian growth , 2008, 0812.2622.

[2]  P. Wiegmann,et al.  Large-N expansion for the 2D Dyson gas , 2005, hep-th/0601009.

[3]  E. Bettelheim,et al.  Normal random matrix ensemble as a growth problem , 2004, hep-th/0401165.

[4]  P. Wiegmann,et al.  Large scale correlations in normal non-Hermitian matrix ensembles , 2002 .

[5]  E. Bettelheim,et al.  Viscous fingering and the shape of an electronic droplet in the quantum Hall regime. , 2001, Physical review letters.

[6]  L. Takhtajan Free Bosons and Tau-Functions for Compact Riemann Surfaces and Closed Smooth Jordan Curves. Current Correlation Functions , 2001, math/0102164.

[7]  A. Zamolodchikov,et al.  Liouville field theory on a pseudosphere , 2001 .

[8]  Thomas C. Halsey,et al.  Diffusion‐Limited Aggregation: A Model for Pattern Formation , 2000 .

[9]  I. Krichever,et al.  Tau-function for Analytic Curves , 2000 .

[10]  Wiegmann,et al.  Integrable structure of interface dynamics , 2000, Physical review letters.

[11]  M. Mineev-Weinstein Selection of the Saffman-Taylor Finger Width in the Absence of Surface Tension: An Exact Result , 1997, patt-sol/9705004.

[12]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[13]  M. Hastings,et al.  Laplacian growth as one-dimensional turbulence , 1996, cond-mat/9607021.

[14]  A. Zamolodchikov,et al.  Conformal bootstrap in Liouville field theory , 1995 .

[15]  A.B.Zamolodchikov,et al.  Structure Constants and Conformal Bootstrap in Liouville Field Theory , 1995, hep-th/9506136.

[16]  Daniel Platt,et al.  Diffusion Limited Aggregation , 1995 .

[17]  Dawson,et al.  Class of nonsingular exact solutions for Laplacian pattern formation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Harvey Segur,et al.  Asymptotics beyond all orders in a model of crystal growth , 1991 .

[19]  M. Klamkin An Inverse Potential Problem , 1988 .

[20]  S. Tanveer Analytic theory for the selection of a symmetric Saffman-Taylor finger in a Hele-Shaw cell , 1987 .

[21]  Chao Tang,et al.  Viscous flows in two dimensions , 1986 .

[22]  Sam Howison,et al.  Fingering in Hele-Shaw cells , 1986, Journal of Fluid Mechanics.

[23]  Langer,et al.  Analytic theory of the selection mechanism in the Saffman-Taylor problem. , 1986, Physical review letters.

[24]  Shraiman,et al.  Velocity selection and the Saffman-Taylor problem. , 1986, Physical review letters.

[25]  Hakim,et al.  Shape selection of Saffman-Taylor fingers. , 1986, Physical review letters.

[26]  B. Shraiman,et al.  Singularities in nonlocal interface dynamics , 1984 .

[27]  S. Richardson Hele Shaw flows with a free boundary produced by the injection of fluid into a narrow channel , 1972, Journal of Fluid Mechanics.

[28]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  J. H. PEARCE,et al.  Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen , 1945, Nature.

[30]  W. R. Longley Review: Gustav Herglotz, Ueber die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen , 1916 .

[31]  P. Wiegmann,et al.  Large scale correlations in normal and general non-Hermitian matrix ensembles , 2003 .

[32]  Martin Flucher,et al.  Vortex Motion in Two Dimensional Hydrodynamics , 1999 .

[33]  R. Delaubenfels The cauchy problem for the Laplace equation , 1994 .

[34]  P. Pelcé Dynamics of curved fronts , 1988 .

[35]  P. Davis The Schwarz function and its applications , 1974 .

[36]  O. D. Kellogg Book Review: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen von Adolf Hurwitz, herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant , 1926 .

[37]  R. Courant,et al.  Vorlesungen über Allgemeine Funktionentheorie und Elliptische Funktionen , 1925 .