Factors affecting the availability of walleye pollock to acoustic and bottom trawl survey gear

Stan Kotwicki1,2*, John K. Horne1,2, Andre E. Punt2, and James N. Ianelli1 National Marine Fisheries Service, Alaska Fisheries Science Center, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA School of Fishery and Aquatic Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA *Corresponding author: tel: +1 206 526 6614; fax: +1 206 526 6723; e-mail: stan.kotwicki@noaa.gov

[1]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[2]  O. Godø,et al.  Fish reaction to trawling noise: The significance for trawl sampling , 1990 .

[3]  B. Carlin,et al.  Diagnostics: A Comparative Review , 2022 .

[4]  A. Punt,et al.  Combining bottom trawl and acoustic data to model acoustic dead zone correction and bottom trawl efficiency parameters for semipelagic species , 2013 .

[5]  HonkalehtoTaina,et al.  Using acoustic data from fishing vessels to estimate walleye pollock (Theragra chalcogramma) abundance in the eastern Bering Sea , 2011 .

[6]  Walleye pollock respond to trawling vessels , 2006 .

[7]  J. Traynor Target-strength measurements of walleye pollock (Theragra chalcogramma) and Pacific whiting (Merluccius productus) , 1996 .

[8]  Egil Ona,et al.  Acoustic sampling and signal processing near the seabed: the deadzone revisited , 1996 .

[9]  O. Godø,et al.  Monitoring changes in abundance of gadoids with varying availability to trawl and acoustic surveys , 1993 .

[10]  Kenneth L. Weinberg,et al.  Whole-gear efficiency of a benthic survey trawl for flatfish , 2007 .

[11]  S. Kotwicki,et al.  Factors influencing net width and sea floor contact of a survey bottom trawl , 2008 .

[12]  R. Webster,et al.  Kriging: a method of interpolation for geographical information systems , 1990, Int. J. Geogr. Inf. Sci..

[13]  John Sibert,et al.  AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models , 2012, Optim. Methods Softw..

[14]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[15]  C. Stransky,et al.  Fishing effects in northeast Atlantic shelf seas: patterns in fishing effort, diversity and community structure. VI. Gale effects on vertical distribution and structure of a fish assemblage in the North Sea , 1999 .

[16]  Susan M. Sogard,et al.  Effects of light, thermoclines and predator presence on vertical distribution and behavioral interactions of juvenile walleye pollock, Theragra chalcogramma Pallas , 1993 .

[17]  G. Walters,et al.  Survey Assessment of Semi-pelagic Gadoids: The Example ofWalleye Pollock, Theragra chalcogramma, in the Eastern Bering Sea , 1994 .

[18]  Craig S. Rose,et al.  Using acoustics to estimate the fish-length selectivity of trawl mesh , 2011 .

[19]  Daniel K. Kimura,et al.  Review of Statistical Aspects of Survey Sampling for Marine Fisheries , 2006 .

[20]  S. Walsh Efficiency of Bottom Sampling Trawls in Deriving Survey Abundance Indices , 2001 .

[21]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[22]  Lg Coggins,et al.  A Simulation Study of the Effects of Aging Error and Sample Size on Sustained Yield Estimates , 1998 .

[23]  D. Somerton,et al.  A comparison of acoustic backscatter between a trawling and a free-running vessel for eastern Bering Sea walleye pollock (Theragra chalcogramma) , 2009 .

[24]  Andreas Lindén,et al.  Using the negative binomial distribution to model overdispersion in ecological count data. , 2011, Ecology.

[25]  C. Mcroy,et al.  The paradox of pelagic food webs in the northern Bering Sea—II. Zooplankton communities , 1989 .

[26]  Dag Tjøstheim,et al.  When fish meet a trawling vessel : examining the behaviour of gadoids using a free-floating buoy and acoustic split-beam tracking , 2005 .

[27]  André E. Punt,et al.  The implications of spatially varying catchability on bottom trawl surveys of fish abundance: a proposed solution involving underwater vehicles , 2013 .

[28]  Toyomi Takahashi,et al.  Vertical Distribution and Prey of Walleye Pollock in the Northern Japan Sea , 1998 .

[29]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[30]  David B. Sampson,et al.  Evaluation of Assumed Error Structure in Stock Assessment Models That Use Sample Estimates of Age Composition , 1998 .

[31]  D. A. Dwyer,et al.  Feeding Habits and Daily Ration of Walleye Pollock (Theragra chalcogramma) in the Eastern Bering Sea, with Special Reference to Cannibalism , 1987 .

[32]  S. Kaartvedt,et al.  Vertical distribution and feeding patterns in fish foraging on the krill Meganyctiphanes norvegica , 2004 .

[33]  Michael H. Kutner Applied Linear Statistical Models , 1974 .

[34]  A. Aglen,et al.  How vertical fish distribution may affect survey results , 1999 .

[35]  E. Ona,et al.  Estimation and compensation models for the shadowing effect in dense fish aggregations , 2003 .

[36]  O. Godø,et al.  Diel variation in the catchability of gadoids and its influence on the reliability of abundance indices , 1996 .

[37]  A. Punt,et al.  Correcting density-dependent effects in abundance estimates from bottom-trawl surveys , 2014 .

[38]  K. Holsman,et al.  Assessment of the walleye pollock stock in the Eastern Bering Sea , 2016 .

[39]  J. Walsh,et al.  Ecosystem analysis in the southeastern Bering sea , 1986 .

[40]  D. L. Alverson,et al.  Demersal Fish Explorations in the Northeastern Pacific Ocean — An Evaluation of Exploratory Fishing Methods and Analytical Approaches to Stock Size and Yield Forecasts , 1969 .

[41]  F. Beamish Vertical Migration by Demersal Fish in the Northwest Atlantic , 1966 .

[42]  B. L. Olla,et al.  Food deprivation affects vertical distribution and activity of a marine fish in a thermal gradient: potential energy-conserving mechanisms , 1996 .

[43]  R. Lauth,et al.  Detecting temporal trends and environmentally-driven changes in the spatial distribution of bottom fishes and crabs on the eastern Bering Sea shelf , 2013 .

[44]  J. Faraway Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models , 2005 .

[45]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[46]  Paul G. Fernandes,et al.  A consistent approach to definitions and symbols in fisheries acoustics , 2002 .

[47]  S. Gauthier,et al.  Acoustic observation of diel vertical migration and shoaling behaviour in Atlantic redfishes , 2002 .

[48]  G. Stauffer NOAA protocols for groundfish bottom trawl surveys of the nation's fishery resources, March 16, 2003 , 2004 .

[49]  Michael W. Davis,et al.  Effects of physical factors on the vertical distribution of larval walleye pollock Theragra chalcogramma under controlled laboratory conditions , 1990 .

[50]  M. Sigler,et al.  A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem , 2012 .

[51]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[52]  J. Giske,et al.  Vertical distribution and trophic interactions of zooplankton and fish in Masfjorden, Norway , 1990 .

[53]  G. Lawson,et al.  The importance of detectability to acoustic surveys of semi-demersal fish , 1999 .

[54]  D. MacLennan,et al.  Day–night and depth effects on catch rates during trawl surveys in the North Sea , 2001 .

[55]  R. B. Mitson,et al.  Fisheries Acoustics: A Practical Manual for Aquatic Biomass Estimation , 1984 .

[56]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[57]  K. Coyle Zooplankton of the Bering Sea: A Review of Russian-Language Literature , 2014 .

[58]  D. Somerton,et al.  The affect of speed through the water on footrope contact of a survey trawl , 2001 .

[59]  Counting capelin: a comparison of acoustic density and trawl catchability , 2002 .

[60]  G. Lawson,et al.  Acoustic surveys in the full monte: simulating uncertainty , 2000 .

[61]  John Hinde,et al.  Overdispersion: models and estimation , 1998 .

[62]  Vidar Hjellvik,et al.  An attempt at estimating the effective fishing height of the bottom trawl using acoustic survey recordings , 2003 .

[63]  C. Wentworth A Scale of Grade and Class Terms for Clastic Sediments , 1922, The Journal of Geology.

[64]  S. Kotwicki,et al.  Estimating Capture Probability of a Survey Bottom Trawl for Bering Sea Skates ( Bathyraja spp . ) and Other Fish , 2005 .

[65]  Sigbjørn Mehl,et al.  Norwegian combined acoustic and bottom trawl surveys for demersal fish in the Barents Sea during winter , 1997 .

[66]  K. Sasaki,et al.  Diel changes in vertical distribution patterns of zooplankton and walleye pollock (Theragra chalcogramma) off the Pacific coast of eastern Hokkaido, Japan, estimated by the volume back scattering strength (Sv) difference method , 2004 .

[67]  Impact of fish distribution and species composition on the relationship between acoustic and swept-area estimates of fish density , 1996 .

[68]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[69]  D. Somerton,et al.  Evidence of the selection of tidal streams by northern rock sole (Lepidopsetta polyxystra) for transport in the eastern Bering Sea , 2009 .

[70]  Wagner Barreto-Souza,et al.  Improved estimators for a general class of beta regression models , 2008, Comput. Stat. Data Anal..

[71]  Ransom A. Myers,et al.  Hierarchical Bayesian models of length-specific catchability of research trawl surveys , 2001 .

[72]  R. Lauth,et al.  Results of the 2014 eastern Bering Sea continental shelf bottom trawl survey of groundfish and invertebrate resources , 2017 .

[73]  J. Kelley,et al.  Seasonal changes in the diel vertical migration of walleye pollock (Theragra chalcogramma) in the northern Gulf of Alaska , 2009, Environmental Biology of Fishes.

[74]  Stan Kotwicki,et al.  Developing an acoustic survey of euphausiids to understand trophic interactions in the Bering Sea ecosystem , 2012 .

[75]  Paul von SzalayP. von Szalay,et al.  The effect of light intensity on the availability of walleye pollock (Theragra chalcogramma) to bottom trawl and acoustic surveys , 2009 .

[76]  S. Walsh,et al.  An adaptive, integrated “acoustic-trawl” survey design for Atlantic cod (Gadus morhua) with estimation of the acoustic and trawl dead zones , 2005 .

[77]  Mark W. Coulson,et al.  Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets. , 2006, Genome.

[78]  V. Trenkel,et al.  Estimating gear efficiency in a combined acoustic and trawl survey, with reference to the spatial distribution of demersal fish , 2010 .

[79]  Dag Tjøstheim,et al.  Diurnal variation in bottom trawl survey catches: does it pay to adjust? , 2002 .