Observational upper limits on the gravitational wave production of core collapse supernovae
暂无分享,去创建一个
[1] Benno Willke,et al. The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .
[2] V. Moscatelli,et al. Calibration and sensitivity of the Virgo detector during its second science run , 2010, 1009.5190.
[3] K. S. Thorne,et al. Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010, 1007.3973.
[4] J. K. Blackburn,et al. FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR , 2010, 1006.2535.
[5] H. Lück,et al. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors , 2010 .
[6] S. Kawamura. Ground-based interferometers and their science reach , 2010 .
[7] G. M. Harry,et al. Advanced LIGO: the next generation of gravitational wave detectors , 2010 .
[8] Chris L. Fryer,et al. THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.
[9] K. S. Thorne,et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.
[10] Hartmut Grote,et al. The GEO 600 status , 2010 .
[11] Joshua R. Smith,et al. Final Results of the All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run , 2010 .
[12] C. Ott,et al. Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational wave data , 2010, 1002.1511.
[13] Cambridge,et al. A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.
[14] K. S. Thorne,et al. SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA , 2009, 0909.3583.
[15] J. K. Blackburn,et al. SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 , 2009, 0908.3824.
[16] B Johnson,et al. An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.
[17] Stephen J. Smartt,et al. Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.
[18] David Blair,et al. Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .
[19] Bernard F. Schutz,et al. Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.
[20] Christian D. Ott,et al. The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.
[21] S. Klimenko,et al. Search for Gravitational Wave Bursts from Soft Gamma Repeaters , 2008, 0808.2050.
[22] C. Ott,et al. Gravitational wave burst signal from core collapse of rotating stars , 2008, 0806.4953.
[23] T. Regimbau,et al. Astrophysical sources of a stochastic gravitational-wave background , 2008, 0806.2794.
[24] M. M. Casey,et al. Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs , 2008 .
[25] T. Bulik,et al. The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.
[26] L. Baiotti,et al. Challenging the paradigm of singularity excision in gravitational collapse. , 2006, Physical review letters.
[27] C. Ott,et al. A new mechanism for gravitational-wave emission in core-collapse supernovae. , 2006, Physical review letters.
[28] K. Kuroda,et al. The status of LCGT , 2006 .
[29] A. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[30] M. Shibata,et al. Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation , 2005, astro-ph/0504567.
[31] D. Blair,et al. The gravitational wave background from neutron star birth throughout the cosmos , 2004 .
[32] Tucson,et al. Gravitational Waves from Axisymmetric, Rotating Stellar Core Collapse , 2003, astro-ph/0307472.
[33] K. Glazebrook,et al. Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .
[34] K. Glazebrook,et al. Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.
[35] J. Font,et al. Relativistic simulations of rotational core collapse - II. Collapse dynamics and gravitational radiation , 2002, astro-ph/0204289.
[36] J. Creighton,et al. Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses , 2001, gr-qc/0105100.
[37] L. Finn. LIGO’s “science reach” , 2001, gr-qc/0104042.
[38] Chris L. Fryer,et al. Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, The Astrophysical Journal.
[39] M. Maggiore. Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.
[40] S. Matarrese,et al. Gravitational wave background from a cosmological population of core-collapse supernovae , 1998, astro-ph/9804259.
[41] B. Allen,et al. Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.
[42] E. Muller. Gravitational radiation from core-collapse supernovae , 1997 .
[43] D. Blair,et al. A cosmological background of gravitational waves produced by supernovae in the early Universe , 1996 .
[44] B. Allen. The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.
[45] Houser,et al. Gravitational radiation from nonaxisymmetric instability in a rotating star. , 1994, Physical review letters.
[46] Flanagan. Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations. , 1993, Physical review. D, Particles and fields.
[47] B. Schutz. Gravitational Radiation , 1989, gr-qc/0003069.
[48] D. Bedford,et al. On relativistic gravitation , 1985 .
[49] W. Bonnor,et al. Gravitational Radiation , 1958, Nature.