Observational upper limits on the gravitational wave production of core collapse supernovae

The upper limit on the energy density of a stochastic gravitational wave (GW) background obtained from the two-year science run (S5) of the Laser Interferometer Gravitational-wave Observatory (LIGO) is used to constrain the average GW production of core collapse supernovae (ccSNe). We assume that the ccSNe rate tracks the star formation history of the universe and show that the stochastic background energy density depends only weakly on the assumed average source spectrum. Using the ccSNe rate for z � 10, we scale the generic source spectrum to obtain an observation-based upper limit on the average GW emission. We show that the mean energy emitted in GWs can be constrained within

[1]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[2]  V. Moscatelli,et al.  Calibration and sensitivity of the Virgo detector during its second science run , 2010, 1009.5190.

[3]  K. S. Thorne,et al.  Calibration of the LIGO gravitational wave detectors in the fifth science run , 2010, 1007.3973.

[4]  J. K. Blackburn,et al.  FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR , 2010, 1006.2535.

[5]  H. Lück,et al.  AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors , 2010 .

[6]  S. Kawamura Ground-based interferometers and their science reach , 2010 .

[7]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[8]  Chris L. Fryer,et al.  THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.

[9]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[10]  Hartmut Grote,et al.  The GEO 600 status , 2010 .

[11]  Joshua R. Smith,et al.  Final Results of the All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run , 2010 .

[12]  C. Ott,et al.  Searching for prompt signatures of nearby core-collapse supernovae by a joint analysis of neutrino and gravitational wave data , 2010, 1002.1511.

[13]  Cambridge,et al.  A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.

[14]  K. S. Thorne,et al.  SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA , 2009, 0909.3583.

[15]  J. K. Blackburn,et al.  SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 , 2009, 0908.3824.

[16]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[17]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[18]  David Blair,et al.  Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .

[19]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[20]  Christian D. Ott,et al.  The gravitational-wave signature of core-collapse supernovae , 2008, 0809.0695.

[21]  S. Klimenko,et al.  Search for Gravitational Wave Bursts from Soft Gamma Repeaters , 2008, 0808.2050.

[22]  C. Ott,et al.  Gravitational wave burst signal from core collapse of rotating stars , 2008, 0806.4953.

[23]  T. Regimbau,et al.  Astrophysical sources of a stochastic gravitational-wave background , 2008, 0806.2794.

[24]  M. M. Casey,et al.  Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs , 2008 .

[25]  T. Bulik,et al.  The Total Merger Rate of Compact Object Binaries in the Local Universe , 2007, 0710.0878.

[26]  L. Baiotti,et al.  Challenging the paradigm of singularity excision in gravitational collapse. , 2006, Physical review letters.

[27]  C. Ott,et al.  A new mechanism for gravitational-wave emission in core-collapse supernovae. , 2006, Physical review letters.

[28]  K. Kuroda,et al.  The status of LCGT , 2006 .

[29]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[30]  M. Shibata,et al.  Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation , 2005, astro-ph/0504567.

[31]  D. Blair,et al.  The gravitational wave background from neutron star birth throughout the cosmos , 2004 .

[32]  Tucson,et al.  Gravitational Waves from Axisymmetric, Rotating Stellar Core Collapse , 2003, astro-ph/0307472.

[33]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[34]  K. Glazebrook,et al.  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[35]  J. Font,et al.  Relativistic simulations of rotational core collapse - II. Collapse dynamics and gravitational radiation , 2002, astro-ph/0204289.

[36]  J. Creighton,et al.  Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses , 2001, gr-qc/0105100.

[37]  L. Finn LIGO’s “science reach” , 2001, gr-qc/0104042.

[38]  Chris L. Fryer,et al.  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, The Astrophysical Journal.

[39]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[40]  S. Matarrese,et al.  Gravitational wave background from a cosmological population of core-collapse supernovae , 1998, astro-ph/9804259.

[41]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[42]  E. Muller Gravitational radiation from core-collapse supernovae , 1997 .

[43]  D. Blair,et al.  A cosmological background of gravitational waves produced by supernovae in the early Universe , 1996 .

[44]  B. Allen The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.

[45]  Houser,et al.  Gravitational radiation from nonaxisymmetric instability in a rotating star. , 1994, Physical review letters.

[46]  Flanagan Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations. , 1993, Physical review. D, Particles and fields.

[47]  B. Schutz Gravitational Radiation , 1989, gr-qc/0003069.

[48]  D. Bedford,et al.  On relativistic gravitation , 1985 .

[49]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.