Thermally Stable Transparent Resistive Random Access Memory based on All‐Oxide Heterostructures

An all-oxide transparent resistive random access memory (T-RRAM) device based on hafnium oxide (HfOx) storage layer and indium-tin oxide (ITO) electrodes is fabricated in this work. The memory device demonstrates not only good optical transmittance but also a forming-free bipolar resistive switching behavior with room-temperature R-OFF/R-ON ratio of 45, excellent endurance of approximate to 5 x 10(7) cycles and long retention time over 10(6) s. More importantly, the HfOx based RRAM carries great ability of anti-thermal shock over a wide temperature range of 10 K to 490 K, and the high R-OFF/R-ON ratio of approximate to 40 can be well maintained under extreme working conditions. The field-induced electrochemical formation and rupture of the robust metal-rich conductive filaments in the mixed-structure hafnium oxide film are found to be responsible for the excellent resistance switching of the T-RRAM devices. The present all-oxide devices are of great potential for future thermally stable transparent electronic applications.

[1]  Clemens Bechinger,et al.  Photoelectrochromic windows and displays , 1996, Nature.

[2]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[3]  H. Hwang,et al.  Resistive switching characteristics of solution-processed TiOx for next-generation non-volatile memory application; transparency, flexibility, and nano-scale memory feasibility , 2011 .

[4]  Robert C. Weast,et al.  Handbook of chemistry and physics : a readyreference book of chemical and physical data , 1972 .

[5]  M. Haemori,et al.  Bias application hard x-ray photoelectron spectroscopy study of forming process of Cu/HfO2/Pt resistive random access memory structure , 2011 .

[6]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[7]  V. Ho,et al.  Resistive switching effects of HfO2 high-k dielectric , 2008 .

[8]  Alberto Piqué,et al.  Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices , 1999 .

[9]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[10]  David Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002 .

[11]  Tae Geun Kim,et al.  Transparent Resistive Switching Memory Using ITO/AlN/ITO Capacitors , 2011, IEEE Electron Device Letters.

[12]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[13]  J. Mooij Electrical Conduction in Concentrated Disordered Transition Metal Alloys , 1973, June 16.

[14]  V. D. Krotikov,et al.  RADIO EMISSION AND NATURE OF THE MOON , 1964 .

[15]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[16]  Michael M. Schieber,et al.  Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds , 1977 .

[17]  Resistance switching in HfO 2-based OxRRAM devices , 2011 .

[18]  T. Jackson,et al.  Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry , 2002 .

[19]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[20]  P. B. Macedo,et al.  Electrical Relaxation in Na2O·3SiO2 Glass , 1972 .

[21]  D. Wolansky,et al.  Impact of Temperature on the Resistive Switching Behavior of Embedded $\hbox{HfO}_{2}$-Based RRAM Devices , 2011, IEEE Transactions on Electron Devices.

[22]  Qi Liu,et al.  Highly Stable Radiation-Hardened Resistive-Switching Memory , 2010, IEEE Electron Device Letters.

[23]  Marco Fiorentino,et al.  A multi-directional backlight for a wide-angle, glasses-free three-dimensional display , 2013, Nature.

[24]  K. Kinoshita,et al.  Flexible and transparent ReRAM with GZO memory layer and GZO-electrodes on large PEN sheet , 2011 .

[25]  J. B. Wachtman MECHANICAL AND ELECTRICAL RELAXATION IN ThO$sub 2$ CONTAINING CaO , 1963 .

[26]  Jirong Sun,et al.  Bipolar Resistance Switching in Fully Transparent ZnO:Mg-Based Devices , 2009 .

[27]  Heng-Yuan Lee,et al.  An Ultrathin Forming-Free $\hbox{HfO}_{x}$ Resistance Memory With Excellent Electrical Performance , 2010, IEEE Electron Device Letters.

[28]  Sung-Yool Choi,et al.  Interface‐Engineered Amorphous TiO2‐Based Resistive Memory Devices , 2010 .

[29]  An Indium-Free Transparent Resistive Switching Random Access Memory , 2011, IEEE Electron Device Letters.

[30]  Maria Rita Perrone,et al.  HfO2 films with high laser damage threshold , 2000 .

[31]  Guo-Qiang Lo,et al.  Chemical insight into origin of forming-free resistive random-access memory devices , 2011 .

[32]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[33]  Yiwei Liu,et al.  Observation of Conductance Quantization in Oxide‐Based Resistive Switching Memory , 2012, Advanced materials.

[34]  G. Thomas Materials science: Invisible circuits , 1997, Nature.

[35]  A. Facchetti,et al.  High-performance transparent inorganic–organic hybrid thin-film n-type transistors , 2006, Nature materials.

[36]  Yan Wang,et al.  Proton-based total-dose irradiation effects on Cu/HfO2:Cu/Pt ReRAM devices , 2010, Nanotechnology.

[37]  Tobin J. Marks,et al.  Transparent electronics : from synthesis to applications , 2010 .

[38]  Nathan I. Croitoru,et al.  Study of HfO2 films prepared by ion-assisted deposition using a gridless end-hall ion source , 1999 .

[39]  Ming-Jinn Tsai,et al.  Atomic-level quantized reaction of HfOx memristor , 2013 .

[40]  Kow-Ming Chang,et al.  Bipolar resistive switching effect in Gd2O3 films for transparent memory application , 2011 .

[41]  K. Sankaran,et al.  First-principles simulation of oxygen diffusion in HfOx: Role in the resistive switching mechanism , 2012 .

[42]  H. Hosono Recent progress in transparent oxide semiconductors: Materials and device application , 2007 .

[43]  Kow-Ming Chang,et al.  Investigation on the abnormal resistive switching induced by ultraviolet light exposure based on HfOx film , 2010, Microelectronics Reliability.

[44]  Resistive‐switching mechanism of transparent nonvolatile memory device based on gallium zinc oxide , 2012 .

[45]  Darrell G. Schlom,et al.  A Thermodynamic Approach to Selecting Alternative Gate Dielectrics , 2002 .

[46]  L. Vasanelli,et al.  Physical characterization of hafnium oxide thin films and their application as gas sensing devices , 1998 .

[47]  Sheng-Yao Huang,et al.  Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory , 2010 .

[48]  Nevill Mott,et al.  ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS , 1956 .

[49]  W. M. Haynes,et al.  Handbook of chemistry and physics : a ready-reference pocket book of chemical and physical data , 1922 .

[50]  潘新宇,et al.  Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches , 2010 .

[51]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[52]  Ming-Jinn Tsai,et al.  Redox Reaction Switching Mechanism in RRAM Device With Structure , 2011 .

[53]  Marius Grundmann,et al.  The physics of semiconductors , 2006 .

[54]  M. Haemori,et al.  Oxygen migration at Pt/HfO2/Pt interface under bias operation , 2010 .

[55]  Alloys,et al.  ASTM Manual on Zirconium and Hafnium , 1977 .

[56]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[57]  A. Galeckas,et al.  One step synthesis of pure cubic and monoclinic HfO2 nanoparticles: Correlating the structure to the electronic properties of the two polymorphs , 2012 .