Decentralised control for large-scale sampled-data systems: digital redesign approach

In this paper, digital redesign (DR) techniques are presented for a decentralised controller of large-scale sampled-data systems. To improve the performance of the previous DR technique, the state-matching error is defined and directly minimised by using the state-matching error cost function. Also, the discretisation error of the interconnection term is eliminated through an exact discrete-time design approach. Sufficient conditions of the proposed DR techniques are obtained in the Lyapunov sense and are converted into optimal problems with linear matrix inequalities. Finally, two numerical examples are provided to demonstrate the performance improvement of the proposed techniques.

[1]  Hagbae Kim,et al.  A new intelligent digital redesign for T-S fuzzy systems: global approach , 2004, IEEE Transactions on Fuzzy Systems.

[2]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[3]  Ho Jae Lee,et al.  Controlling linear systems with nonlinear perturbations under sampled-data output feedback: digital redesign approach , 2010, Int. J. Control.

[4]  Young Hoon Joo,et al.  Observer-based sampled-data control for nonlinear systems: Robust intelligent digital redesign approach , 2014 .

[5]  Guanrong Chen,et al.  Chaos-EP-Based Digital Redesign of Uncertain Hybrid Time-Delay Systems With State and Input Constraints , 2009, IEEE Transactions on Instrumentation and Measurement.

[6]  Shu-Mei Guo,et al.  Low‐order multi‐rate linear time‐invariant decentralized trackers using the new observer‐based sub‐optimal method for unknown sampled‐data nonlinear time‐delay system with closed‐loop decoupling , 2011 .

[7]  Bernhard P. Lampe,et al.  Application of Laplace transformation for digital redesign of continuous control systems , 1999, IEEE Trans. Autom. Control..

[8]  Jin Bae Park,et al.  Robust digital control of fuzzy systems with parametric uncertainties: LMI-based digital redesign approach , 2010, Fuzzy Sets Syst..

[9]  Young Hoon Joo,et al.  Intelligent digital redesign for nonlinear systems using a guaranteed cost control method , 2013 .

[10]  Chen-Chien Hsu,et al.  Digital redesign of uncertain interval systems based on time-response resemblance via particle swarm optimization , 2008, 2008 IEEE Conference on Soft Computing in Industrial Applications.

[11]  Ruth F. Curtain,et al.  Linear-quadratic control: An introduction , 1997, Autom..

[12]  Jason Sheng-Hong Tsai,et al.  Digital redesign of the decentralised adaptive tracker for linear large-scale systems , 2010, Int. J. Syst. Sci..

[13]  J. L. Zhang,et al.  Pseudo-continuous-time quadratic regulators with pole placement in a specific region , 1990 .

[14]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[15]  Xiang Chen,et al.  Digital redesign via the generalised bilinear transformation , 2009, Int. J. Control.

[16]  Chen-Chien Hsu,et al.  Digital redesign of uncertain interval systems based on time-response resemblance via particle swarm optimization , 2008, SOCO 2008.

[17]  Karl Henrik Johansson,et al.  Distributed event-based control for interconnected linear systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[18]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[19]  Xiaofeng Wang,et al.  Event-triggered broadcasting across distributed networked control systems , 2008, 2008 American Control Conference.

[20]  Guisheng Zhai,et al.  An extension of generalized bilinear transformation for digital redesign , 2012 .

[21]  Jian Zhang,et al.  Real-time random delay compensation with prediction-based digital redesign. , 2011, ISA transactions.

[22]  Shu-Mei Guo,et al.  Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints , 2011 .

[23]  Roozbeh Dargahi,et al.  H∞-optimal digital redesign method , 2007, J. Frankl. Inst..

[24]  Young Hoon Joo,et al.  Robust stabilisation of sampled-data control systems with non-linear perturbations via digital redesign , 2009 .

[25]  Juan Gonzalo Barajas-Ramírez,et al.  Robust digital controllers for uncertain chaotic systems: A digital redesign approach☆ , 2007 .

[26]  B. Francis,et al.  A lifting technique for linear periodic systems with applications to sampled-data control , 1991 .

[27]  K. Gu An integral inequality in the stability problem of time-delay systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  Cheng-Shion Shieh,et al.  An improvement on the digital redesign method using fuzzy PWM controller , 2010 .

[29]  Leang-San Shieh,et al.  Efficient decentralized iterative learning tracker for unknown sampled-data interconnected large-scale state-delay system with closed-loop decoupling property. , 2012, ISA transactions.

[30]  Leang-San Shieh,et al.  Pulse-width-modulated feedback control of nonlinear systems: optimal linearization-based digital redesign approach , 2011, Int. J. Gen. Syst..

[31]  Z. H. Peng,et al.  An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach , 2005, Int. J. Gen. Syst..

[32]  Jin Bae Park,et al.  Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control , 2012 .

[33]  Yutaka Yamamoto,et al.  A function space approach to sampled data control systems and tracking problems , 1994, IEEE Trans. Autom. Control..

[34]  Young Hoon Joo,et al.  An efficient observer-based sampled-data control: digital redesign approach , 2003 .

[35]  Young Hoon Joo,et al.  Robust control of observer-based sampled-data systems: digital redesign approach , 2012 .

[36]  Paul Strauss Computer Controlled Systems Analysis And Design With Process Orientated Models , 2016 .

[37]  Young Hoon Joo,et al.  Guaranteed cost sampled‐data fuzzy control for non‐linear systems: a continuous‐time Lyapunov approach , 2013 .

[38]  Tomomichi Hagiwara,et al.  FR-operator approach to the H2 analysis and synthesis of sampled-data systems , 1995, IEEE Trans. Autom. Control..

[39]  Cheng-Shion Shieh GA-based hybrid control of sampled-data system with state and input delays via digital redesign , 2005, Int. J. Gen. Syst..

[40]  Leang-San Shieh,et al.  A novel linear quadratic observer and tracker for the linear sampled data regular system with a direct feedthrough term: a digital redesign approach , 2013, IMA J. Math. Control. Inf..

[41]  Koichi Suyama,et al.  Digital redesign of infinite-dimensional controllers based on numerical integration of new representation , 2013, Syst. Control. Lett..

[42]  Jason Sheng-Hong Tsai,et al.  An improvement on the digital redesign method based on the block-pulse function approximation , 1993 .

[43]  Jin Bae Park,et al.  Further refinement on LMI-based digital redesign: delta-operator approach , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[44]  Jin Bae Park,et al.  LMI approach to digital redesign of linear time-invariant systems , 2002 .

[45]  C. A. Rabbath,et al.  Reduced-order PIM methods for digital redesign , 2003 .

[46]  H. J. Lee,et al.  Digital control of nonlinear systems: optimal linearisation-based digital redesign approach , 2008 .

[47]  Chin-Shung Hsu Digital control systems , 1982, Proceedings of the IEEE.

[48]  Ho Jae Lee,et al.  Improved digital redesign: integral approach , 2013 .

[49]  Guanrong Chen,et al.  Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems , 1999, IEEE Trans. Fuzzy Syst..

[50]  Chen-Chien James Hsu,et al.  Digital redesign of uncertain interval systems based on extremal gain/phase margins via a hybrid particle swarm optimizer , 2010, Appl. Soft Comput..