MCS—A new algorithm for multicriteria optimisation in constraint programming

In this paper we propose a new algorithm called MCS for the search for solutions to multicriteria combinatorial optimisation problems. To quickly produce a solution that offers a good trade-off between criteria, the MCS algorithm alternates several Branch & Bound searches following diversified search strategies. It is implemented in CP in a dedicated framework and can be specialised for either complete or partial search.

[1]  Jin-Kao Hao,et al.  A Population and Interval Constraint Propagation Algorithm , 2003, EMO.

[2]  Michel Grabisch,et al.  Alternative Representations of Discrete Fuzzy Measures for Decision Making , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[3]  Matthew L. Ginsberg,et al.  Limited Discrepancy Search , 1995, IJCAI.

[4]  Paul Shaw,et al.  Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems , 1998, CP.

[5]  Christophe Labreuche,et al.  How to Improve Acts: An Alternative Representation of the Importance of Criteria in MCDM , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[6]  Toby Walsh Depth-bounded Discrepancy Search , 1997, IJCAI.

[7]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[8]  C. B. E. Costa,et al.  A Theoretical Framework for Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) , 1997 .

[9]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[10]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[11]  Michel Grabisch,et al.  Application of the Choquet integral in multicriteria decision making , 2000 .

[12]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[13]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[14]  Gilbert Laporte,et al.  Examination Timetabling: Algorithmic Strategies and Applications , 1994 .

[15]  Christophe Labreuche,et al.  The Choquet integral for the aggregation of interval scales in multicriteria decision making , 2003, Fuzzy Sets Syst..

[16]  Marco Gavanelli,et al.  An Algorithm for Multi-Criteria Optimization in CSPs , 2002, ECAI.

[17]  Jacques Teghem,et al.  Multiple Criteria Optimization, State of the Art. Annotated Bibliographic Surveys, M. Ehrgott, X. Gandibleux (Eds.). Kluwer International Series (Operations Research and Management Science), Boston, Dordrecht, London (2002), (496pp.), ISBN: 1-4020-7128-0 , 2005 .

[18]  Fabien Le Huédé Intégration d'un modèle d'Aide à la Décision Multicritère en Programmation Par Contraintes , 2003 .

[19]  G. Choquet Theory of capacities , 1954 .

[20]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[21]  Ulrich Junker,et al.  Preference-Based Search and Multi-Criteria Optimization , 2002, Ann. Oper. Res..

[22]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[23]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[24]  Christophe Labreuche,et al.  Integration of a Multicriteria Decision Model in Constraint Programming , 2002 .

[25]  Simon de Givry,et al.  ToOLS : A Library for Partial and Hybrid Search Methods , 2003 .

[26]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[27]  Michel Grabisch,et al.  Fuzzy Measures and Integrals , 1995 .

[28]  Matthew L. Ginsberg,et al.  Iterative Broadening , 1990, Artif. Intell..