暂无分享,去创建一个
Primoz Skraba | Miguel O. Bernabeu | Gabriele Beltramo | Ylenia Giarratano | Rayna Andreeva | Rik Sarkar | P. Skraba | Ylenia Giarratano | M. Bernabeu | R. Andreeva | Rik Sarkar | Gabriele Beltramo
[1] Andrea Bergmann,et al. Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .
[2] Charles Steinhorn,et al. Tame Topology and O-Minimal Structures , 2008 .
[3] R. Ghrist,et al. Euler Calculus with Applications to Signals and Sensing , 2012, 1202.0275.
[4] Masaki Kashiwara,et al. Persistent homology and microlocal sheaf theory , 2017, J. Appl. Comput. Topol..
[5] Nathan Linial,et al. On the phase transition in random simplicial complexes , 2014, 1410.1281.
[6] Martin F. Kraus,et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.
[7] Hubert Wagner,et al. Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images , 2017, CAIP.
[8] M. Haugh,et al. An Introduction to Copulas , 2016 .
[9] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1992, VVS.
[10] A. Patel,et al. Multiparameter Persistence Diagrams , 2019 .
[11] S. Mukherjee,et al. Persistent Homology Transform for Modeling Shapes and Surfaces , 2013, 1310.1030.
[12] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[13] Matthew Kahle. Topology of random simplicial complexes: a survey , 2013, 1301.7165.
[14] Xincheng Yao,et al. Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy. , 2019, Biomedical optics express.
[15] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[16] Matthew Kahle,et al. Topology of random clique complexes , 2006, Discret. Math..
[17] Steve Oudot,et al. Inverse Problems in Topological Persistence , 2018, Topological Data Analysis.
[18] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[19] D W Beaven,et al. Epidemiology of diabetes mellitus. , 1974, The New Zealand medical journal.
[20] Yuliy Baryshnikov,et al. Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..
[21] Jun Yan,et al. Elements of Copula Modeling with R , 2019 .
[22] Hao Zhou,et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. , 2018, International journal of ophthalmology.
[23] P. Schapira,et al. Tomography of Constructible Functions , 1995, AAECC.
[24] T. MacGillivray,et al. A Framework for the Discovery of Retinal Biomarkers in Optical Coherence Tomography Angiography (OCTA) , 2020, OMIA@MICCAI.
[25] Yuliy Baryshnikov,et al. Euler integration over definable functions , 2009, Proceedings of the National Academy of Sciences.
[26] Robert J. Adler,et al. Rotation and scale space random fields and the Gaussian kinematic formula , 2011 .
[27] J. J. Wang,et al. Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy , 2011, Diabetologia.
[28] Matti Pietikäinen,et al. Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.
[29] Taeyoon Son,et al. Quantitative artery-vein analysis in optical coherence tomography angiography of diabetic retinopathy , 2019, BiOS.
[30] Leonidas J. Guibas,et al. Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.
[31] Aki Kato,et al. ENLARGEMENT OF FOVEAL AVASCULAR ZONE IN DIABETIC EYES EVALUATED BY EN FACE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.
[32] Peter J. Diggle,et al. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns , 2013 .
[33] L. van den Dries,et al. Tame Topology and O-minimal Structures , 1998 .
[34] Ayman El-Baz,et al. Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study , 2018, British Journal of Ophthalmology.
[35] Xincheng Yao,et al. QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES FOR OBJECTIVE CLASSIFICATION AND STAGING OF DIABETIC RETINOPATHY. , 2020 .
[36] R. Ho. Algebraic Topology , 2022 .
[37] Rien van de Weygaert,et al. Topology and geometry of Gaussian random fields I: on Betti numbers, Euler characteristic, and Minkowski functionals , 2018, Monthly Notices of the Royal Astronomical Society.
[38] Manuel G. Penedo,et al. Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images , 2018, PloS one.
[39] Wojciech Chachólski,et al. Multidimensional Persistence and Noise , 2015, Foundations of Computational Mathematics.
[40] Primoz Skraba,et al. Homological percolation and the Euler characteristic. , 2019, Physical review. E.
[41] Michael Werman,et al. Efficient classification using the Euler characteristic , 2014, Pattern Recognit. Lett..
[42] Heather A. Harrington,et al. Stratifying Multiparameter Persistent Homology , 2017, SIAM J. Appl. Algebra Geom..
[43] Stephan Michels,et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.
[44] Xincheng Yao,et al. Quantitative optical coherence tomography angiography: A review , 2020, Experimental biology and medicine.
[45] Sayan Mukherjee,et al. How Many Directions Determine a Shape and other Sufficiency Results for Two Topological Transforms , 2018, Transactions of the American Mathematical Society, Series B.
[46] R. Adler,et al. Random Fields and Geometry , 2007 .
[47] R. Ghrist,et al. Inversion of Euler integral transforms with applications to sensor data , 2011 .
[48] Xincheng Yao,et al. QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES FOR OBJECTIVE CLASSIFICATION AND STAGING OF DIABETIC RETINOPATHY. , 2018, Retina.
[49] Alessandro Fontanella,et al. DR Detection Using Optical Coherence Tomography Angiography (OCTA): A Transfer Learning Approach with Robustness Analysis , 2020, OMIA@MICCAI.
[50] M. Rewers,et al. The Epidemiology of Diabetes Mellitus: Second Edition , 2008 .
[51] Dirk P. Kroese,et al. Spatial Process Generation , 2013, 1308.0399.
[52] Afra Zomorodian,et al. The Theory of Multidimensional Persistence , 2009, Discret. Comput. Geom..
[53] R. Ghrist,et al. Euler–Bessel and Euler–Fourier transforms , 2010, 1011.4494.
[54] Skylar Stolte,et al. A survey on medical image analysis in diabetic retinopathy , 2020, Medical Image Anal..
[55] K. Worsley,et al. Unified univariate and multivariate random field theory , 2004, NeuroImage.
[56] Shriji Patel,et al. Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy , 2018, Eye.
[57] L. Schmetterer,et al. Optical coherence tomography angiography in diabetic retinopathy: a review of current applications , 2019, Eye and Vision.
[58] M. Kashiwara,et al. Integral transforms with exponential kernels and Laplace transform , 1997 .
[59] Claudia Landi,et al. Finiteness of rank invariants of multidimensional persistent homology groups , 2011, Appl. Math. Lett..
[60] Afra Zomorodian,et al. Computational topology , 2010 .
[61] Tom Leinster. The Euler characteristic of a category , 2006 .
[62] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[63] Herbert Edelsbrunner,et al. Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..
[64] K. Worsley. Detecting activation in fMRI data , 2003, Statistical methods in medical research.
[65] Rachel Levanger,et al. Persistent homology and Euler integral transforms , 2018, J. Appl. Comput. Topol..
[66] Tom MacGillivray,et al. Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics , 2019, Translational vision science & technology.
[67] Joobin Khadamy,et al. An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy , 2018, Journal of ophthalmic & vision research.