Euler Characteristic Surfaces

In this paper, we investigate the use of the Euler characteristic for the topological data analysis, particularly over higher dimensional parameter spaces. The Euler characteristic is a classical, well-understood topological invariant that has appeared in numerous applications, primarily in the context of random fields. The goal of this paper, is to present the extension of using the Euler characteristic in higher dimensional parameter spaces. The topological data analysis of higher dimensional parameter spaces using stronger invariants such as homology, has and continues to be the subject of intense research. However, as important theoretical and computational obstacles remain, the use of the Euler characteristic represents an important intermediary step toward multi-parameter topological data analysis. We show the usefulness of the techniques using generated examples as well as a real world dataset of detecting diabetic retinopathy in retinal images.

[1]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[2]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[3]  R. Ghrist,et al.  Euler Calculus with Applications to Signals and Sensing , 2012, 1202.0275.

[4]  Masaki Kashiwara,et al.  Persistent homology and microlocal sheaf theory , 2017, J. Appl. Comput. Topol..

[5]  Nathan Linial,et al.  On the phase transition in random simplicial complexes , 2014, 1410.1281.

[6]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[7]  Hubert Wagner,et al.  Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images , 2017, CAIP.

[8]  M. Haugh,et al.  An Introduction to Copulas , 2016 .

[9]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[10]  A. Patel,et al.  Multiparameter Persistence Diagrams , 2019 .

[11]  S. Mukherjee,et al.  Persistent Homology Transform for Modeling Shapes and Surfaces , 2013, 1310.1030.

[12]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[13]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[14]  Xincheng Yao,et al.  Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy. , 2019, Biomedical optics express.

[15]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[16]  Matthew Kahle,et al.  Topology of random clique complexes , 2006, Discret. Math..

[17]  Steve Oudot,et al.  Inverse Problems in Topological Persistence , 2018, Topological Data Analysis.

[18]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[19]  D W Beaven,et al.  Epidemiology of diabetes mellitus. , 1974, The New Zealand medical journal.

[20]  Yuliy Baryshnikov,et al.  Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..

[21]  Jun Yan,et al.  Elements of Copula Modeling with R , 2019 .

[22]  Hao Zhou,et al.  A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. , 2018, International journal of ophthalmology.

[23]  P. Schapira,et al.  Tomography of Constructible Functions , 1995, AAECC.

[24]  T. MacGillivray,et al.  A Framework for the Discovery of Retinal Biomarkers in Optical Coherence Tomography Angiography (OCTA) , 2020, OMIA@MICCAI.

[25]  Yuliy Baryshnikov,et al.  Euler integration over definable functions , 2009, Proceedings of the National Academy of Sciences.

[26]  Robert J. Adler,et al.  Rotation and scale space random fields and the Gaussian kinematic formula , 2011 .

[27]  J. J. Wang,et al.  Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy , 2011, Diabetologia.

[28]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[29]  Taeyoon Son,et al.  Quantitative artery-vein analysis in optical coherence tomography angiography of diabetic retinopathy , 2019, BiOS.

[30]  Leonidas J. Guibas,et al.  Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.

[31]  Aki Kato,et al.  ENLARGEMENT OF FOVEAL AVASCULAR ZONE IN DIABETIC EYES EVALUATED BY EN FACE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[32]  Peter J. Diggle,et al.  Statistical Analysis of Spatial and Spatio-Temporal Point Patterns , 2013 .

[33]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[34]  Ayman El-Baz,et al.  Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study , 2018, British Journal of Ophthalmology.

[35]  Xincheng Yao,et al.  QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES FOR OBJECTIVE CLASSIFICATION AND STAGING OF DIABETIC RETINOPATHY. , 2020 .

[36]  R. Ho Algebraic Topology , 2022 .

[37]  Rien van de Weygaert,et al.  Topology and geometry of Gaussian random fields I: on Betti numbers, Euler characteristic, and Minkowski functionals , 2018, Monthly Notices of the Royal Astronomical Society.

[38]  Manuel G. Penedo,et al.  Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images , 2018, PloS one.

[39]  Wojciech Chachólski,et al.  Multidimensional Persistence and Noise , 2015, Foundations of Computational Mathematics.

[40]  Primoz Skraba,et al.  Homological percolation and the Euler characteristic. , 2019, Physical review. E.

[41]  Michael Werman,et al.  Efficient classification using the Euler characteristic , 2014, Pattern Recognit. Lett..

[42]  Heather A. Harrington,et al.  Stratifying Multiparameter Persistent Homology , 2017, SIAM J. Appl. Algebra Geom..

[43]  Stephan Michels,et al.  Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy , 2015, Graefe's Archive for Clinical and Experimental Ophthalmology.

[44]  Xincheng Yao,et al.  Quantitative optical coherence tomography angiography: A review , 2020, Experimental biology and medicine.

[45]  Sayan Mukherjee,et al.  How Many Directions Determine a Shape and other Sufficiency Results for Two Topological Transforms , 2018, Transactions of the American Mathematical Society, Series B.

[46]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[47]  R. Ghrist,et al.  Inversion of Euler integral transforms with applications to sensor data , 2011 .

[48]  Xincheng Yao,et al.  QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES FOR OBJECTIVE CLASSIFICATION AND STAGING OF DIABETIC RETINOPATHY. , 2018, Retina.

[49]  Alessandro Fontanella,et al.  DR Detection Using Optical Coherence Tomography Angiography (OCTA): A Transfer Learning Approach with Robustness Analysis , 2020, OMIA@MICCAI.

[50]  M. Rewers,et al.  The Epidemiology of Diabetes Mellitus: Second Edition , 2008 .

[51]  Dirk P. Kroese,et al.  Spatial Process Generation , 2013, 1308.0399.

[52]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2009, Discret. Comput. Geom..

[53]  R. Ghrist,et al.  Euler–Bessel and Euler–Fourier transforms , 2010, 1011.4494.

[54]  Skylar Stolte,et al.  A survey on medical image analysis in diabetic retinopathy , 2020, Medical Image Anal..

[55]  K. Worsley,et al.  Unified univariate and multivariate random field theory , 2004, NeuroImage.

[56]  Shriji Patel,et al.  Optical coherence tomography angiography characteristics in diabetic patients without clinical diabetic retinopathy , 2018, Eye.

[57]  L. Schmetterer,et al.  Optical coherence tomography angiography in diabetic retinopathy: a review of current applications , 2019, Eye and Vision.

[58]  M. Kashiwara,et al.  Integral transforms with exponential kernels and Laplace transform , 1997 .

[59]  Claudia Landi,et al.  Finiteness of rank invariants of multidimensional persistent homology groups , 2011, Appl. Math. Lett..

[60]  Afra Zomorodian,et al.  Computational topology , 2010 .

[61]  Tom Leinster The Euler characteristic of a category , 2006 .

[62]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[63]  Herbert Edelsbrunner,et al.  Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..

[64]  K. Worsley Detecting activation in fMRI data , 2003, Statistical methods in medical research.

[65]  Rachel Levanger,et al.  Persistent homology and Euler integral transforms , 2018, J. Appl. Comput. Topol..

[66]  Tom MacGillivray,et al.  Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics , 2019, Translational vision science & technology.

[67]  Joobin Khadamy,et al.  An Update on Optical Coherence Tomography Angiography in Diabetic Retinopathy , 2018, Journal of ophthalmic & vision research.