Rational tuning of high-energy visible light absorption for panchromatic small molecules by a two-dimensional conjugation approach† †Electronic supplementary information (ESI) available: Experimental details, synthesis and characterization of 2D-BAIs, computational details. See DOI: 10.1039/c6sc0042

Rational design leads to panchromatic absorption in small molecules by extension of conjugation on two orthogonal axes of an indigo-derived electron acceptor.

[1]  Linghai Xie,et al.  Pi-Extended Diindole-Fused Azapentacenone: Synthesis, Characterization, and Photophysical and Lithium-Storage Properties. , 2016, Chemistry, an Asian journal.

[2]  Kealan J. Fallon,et al.  A Nature-Inspired Conjugated Polymer for High Performance Transistors and Solar Cells , 2015 .

[3]  Benlin Hu,et al.  Novel donor–acceptor polymers based on 7-perfluorophenyl-6H-[1,2,5]thiadiazole[3,4-g]benzoimidazole for bulk heterojunction solar cells , 2015 .

[4]  Yongsheng Chen,et al.  A perylene diimide (PDI)-based small molecule with tetrahedral configuration as a non-fullerene acceptor for organic solar cells , 2015 .

[5]  A. Pron,et al.  Structural, Spectroscopic, Electrochemical, and Electroluminescent Properties of Tetraalkoxydinaphthophenazines: New Solution-Processable Nonlinear Azaacenes , 2015 .

[6]  Bei Chu,et al.  High-performance organic small-molecule panchromatic photodetectors. , 2015, ACS applied materials & interfaces.

[7]  Katherine A Mazzio,et al.  The future of organic photovoltaics. , 2015, Chemical Society reviews.

[8]  F. Liu,et al.  New form of an old natural dye: bay-annulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors. , 2014, Journal of the American Chemical Society.

[9]  A. Pron,et al.  Indanthrone dye revisited after sixty years. , 2014, Chemical communications.

[10]  D. Gryko,et al.  From π-expanded coumarins to π-expanded pentacenes. , 2014, Chemical communications.

[11]  Guillermo C Bazan,et al.  Bulk heterojunction solar cells: morphology and performance relationships. , 2014, Chemical reviews.

[12]  Ha T. M. Le,et al.  Benzobisoxazole cruciforms as fluorescent sensors. , 2014, Accounts of chemical research.

[13]  Jianhui Hou,et al.  Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. , 2014, Accounts of chemical research.

[14]  Ji Qi,et al.  Panchromatic small molecules for UV-Vis-NIR photodetectors with high detectivity , 2014 .

[15]  Masahiro Nakano,et al.  π-Building Blocks for Organic Electronics: Revaluation of “Inductive” and “Resonance” Effects of π-Electron Deficient Units , 2014 .

[16]  Gang Li,et al.  25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research , 2013, Advanced materials.

[17]  N. S. Sariciftci,et al.  25th Anniversary Article: Progress in Chemistry and Applications of Functional Indigos for Organic Electronics , 2013, Advanced materials.

[18]  M. Jeffries‐EL,et al.  Influence of conjugation axis on the optical and electronic properties of aryl-substituted benzobisoxazoles. , 2013, The Journal of organic chemistry.

[19]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[20]  Craig J. Hawker,et al.  A renaissance of color: New structures and building blocks for organic electronics , 2013 .

[21]  Klaus Müllen,et al.  Design strategies for organic semiconductors beyond the molecular formula. , 2012, Nature chemistry.

[22]  S. Thayumanavan,et al.  Predictably tuning the frontier molecular orbital energy levels of panchromatic low band gap BODIPY-based conjugated polymers , 2012 .

[23]  J. Teuscher,et al.  A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells , 2012 .

[24]  Jizheng Wang,et al.  Structures and properties of conjugated Donor–Acceptor copolymers for solar cell applications , 2012 .

[25]  Yongfang Li Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. , 2012, Accounts of chemical research.

[26]  Mihai Irimia-Vladu,et al.  Indigo ‐ A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits , 2012, Advanced materials.

[27]  J. Fréchet,et al.  Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. , 2011, Journal of the American Chemical Society.

[28]  Tao Jia,et al.  Nitrile‐Substituted QA Derivatives: New Acceptor Materials for Solution‐Processable Organic Bulk Heterojunction Solar Cells , 2011 .

[29]  Jun-Ho Yum,et al.  Panchromatic engineering for dye-sensitized solar cells , 2011 .

[30]  John R. Reynolds,et al.  Isoindigo-Based Donor−Acceptor Conjugated Polymers , 2010 .

[31]  U. Bunz,et al.  Cross-conjugated cruciform fluorophores. , 2010, Accounts of chemical research.

[32]  J. Reynolds,et al.  Color control in pi-conjugated organic polymers for use in electrochromic devices. , 2010, Chemical reviews.

[33]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[34]  B. Kräutler,et al.  "Blackening" porphyrins by conjugation with quinones. , 2009, Angewandte Chemie.

[35]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[36]  C. Nuckolls,et al.  Cruciform pi-systems for molecular electronics applications. , 2003, Journal of the American Chemical Society.

[37]  C. Cooksey Tyrian Purple: 6,6’-Dibromoindigo and Related Compounds , 2001, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[38]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[39]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[40]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .