Infrared dust spectral signatures from AIRS

[1] The Atmospheric Infrared Sounder (AIRS) on board NASA's Aqua satellite platform is a hypersectral IR temperature and humidity sounder for numerical weather prediction and climate change studies. We use the rich spectral information available in the AIRS thermal infrared radiances to study the spectral signatures of dust over ocean for four case studies, and to retrieve dust optical depths using a fast two-stream radiative transfer model. Retrieved optical depths for one case, a dust storm spreading over the Eastern Mediterranean in October 2002, are compared with visible imagery and MODIS optical depth retrievals. This work represents a preliminary step to removing the effects of dust on the retrieval of temperature and water vapor from the AIRS measurements.

[1]  Irina N. Sokolik,et al.  The spectral radiative signature of wind‐blown mineral dust: Implications for remote sensing in the thermal IR region , 2002 .

[2]  R. Goody Prospects for Atmospheric Radiation , 1987 .

[3]  Scott E. Hannon,et al.  Measurements of cirrus cloud parameters using AIRS , 2004, SPIE Remote Sensing.

[4]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[5]  Merritt N. Deeter,et al.  A HYBRID EDDINGTON-SINGLE SCATTERING RADIATIVE TRANSFER MODEL FOR COMPUTING RADIANCES FROM THERMALLY EMITTING ATMOSPHERES , 1998 .

[6]  A. Heymsfield,et al.  Longwave radiative forcing of Indian Ocean tropospheric aerosol , 2002 .

[7]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[8]  Melissa D. Lane,et al.  Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite , 1999 .

[9]  Alain Chedin,et al.  Dust altitude and infrared optical depth from AIRS , 2004 .

[10]  Shepard A. Clough,et al.  Near micron‐sized cirrus cloud particles in high‐resolution infrared spectra: An orographic case study , 2003 .

[11]  Larrabee L. Strow,et al.  An overview of the AIRS radiative transfer model , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  Scott E. Hannon,et al.  Quantifying tropospheric volcanic emissions with AIRS: The 2002 eruption of Mt. Etna (Italy) , 2005 .

[13]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[14]  Yoram J. Kaufman,et al.  Dust transport and deposition observed from the Terra‐Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean , 2005 .

[15]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[16]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[17]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[18]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  Yingxin Gu,et al.  Retrieval of mass and sizes of particles in sandstorms using two MODIS IR bands: A case study of April 7, 2001 sandstorm in China , 2003 .

[20]  F. Volz,et al.  Infrared optical constants of ammonium sulfate, sahara dust, volcanic pumice, and flyash. , 1973, Applied optics.