RGB-Depth SLAM Review

Simultaneous Localization and Mapping (SLAM) have made the real-time dense reconstruction possible increasing the prospects of navigation, tracking, and augmented reality problems. Some breakthroughs have been achieved in this regard during past few decades and more remarkable works are still going on. This paper presents an overview of SLAM approaches that have been developed till now. Kinect Fusion algorithm, its variants, and further developed approaches are discussed in detailed. The algorithms and approaches are compared for their effectiveness in tracking and mapping based on Root Mean Square error over online available datasets.

[1]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[2]  David Kim,et al.  Shake'n'sense: reducing interference for overlapping structured light depth cameras , 2012, CHI.

[3]  Matthias Nießner,et al.  Real-time 3D reconstruction at scale using voxel hashing , 2013, ACM Trans. Graph..

[4]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[5]  Matthias Nießner,et al.  BundleFusion , 2016, TOGS.

[6]  Helder Araújo,et al.  A fully dense and globally consistent 3D map reconstruction approach for GI tract to enhance therapeutic relevance of the endoscopic capsule robot , 2017, ArXiv.

[7]  Stefan Leutenegger,et al.  ElasticFusion: Dense SLAM Without A Pose Graph , 2015, Robotics: Science and Systems.

[8]  John J. Leonard,et al.  Robust Tracking for Real-Time Dense RGB-D Mapping with Kintinuous , 2012 .

[9]  Wolfram Burgard,et al.  Towards a benchmark for RGB-D SLAM evaluation , 2011, RSS 2011.

[10]  Dieter Fox,et al.  RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments , 2012, Int. J. Robotics Res..

[11]  Esra Ataer Cansizoglu,et al.  Object detection and tracking in RGB-D SLAM via hierarchical feature grouping , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[12]  Richard Szeliski,et al.  Reconstructing Rome , 2010, Computer.

[13]  Yasin Almalioglu,et al.  Endo-VMFuseNet: Deep Visual-Magnetic Sensor Fusion Approach for Uncalibrated, Unsynchronized and Asymmetric Endoscopic Capsule Robot Localization Data , 2017, ArXiv.

[14]  Niko Sünderhauf,et al.  Towards a robust back-end for pose graph SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[15]  Helder Araújo,et al.  A deep learning based fusion of RGB camera information and magnetic localization information for endoscopic capsule robots , 2017, International Journal of Intelligent Robotics and Applications.

[16]  Ben Glocker,et al.  Real-Time RGB-D Camera Relocalization via Randomized Ferns for Keyframe Encoding , 2015, IEEE Transactions on Visualization and Computer Graphics.

[17]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[18]  Erkan Uslu,et al.  3 dimensional thermal mapping , 2016, 2016 24th Signal Processing and Communication Application Conference (SIU).

[19]  John J. Leonard,et al.  Kintinuous: Spatially Extended KinectFusion , 2012, AAAI 2012.

[20]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Luc Van Gool,et al.  In-hand scanning with online loop closure , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[22]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[23]  Jiawen Chen,et al.  Scalable real-time volumetric surface reconstruction , 2013, ACM Trans. Graph..

[24]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[25]  Yasir Latif,et al.  Robust loop closing over time for pose graph SLAM , 2013, Int. J. Robotics Res..

[26]  Vladlen Koltun,et al.  Dense scene reconstruction with points of interest , 2013, ACM Trans. Graph..

[27]  Dieter Fox,et al.  Manipulator and object tracking for in-hand 3D object modeling , 2011, Int. J. Robotics Res..

[28]  Dieter Schmalstieg,et al.  OmniKinect: real-time dense volumetric data acquisition and applications , 2012, VRST '12.

[29]  Branko Karan Calibration of Kinect-type RGB-D sensors for robotic applications , 2015 .

[30]  Helder Araújo,et al.  A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots , 2017, International Journal of Intelligent Robotics and Applications.

[31]  Helder Araújo,et al.  A Non-Rigid Map Fusion-Based RGB-Depth SLAM Method for Endoscopic Capsule Robots , 2017, ArXiv.

[32]  Esra Ataer Cansizoglu,et al.  Tracking an RGB-D Camera Using Points and Planes , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[33]  Yasin Almalioglu,et al.  Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Helder Araújo,et al.  EndoSensorFusion: Particle Filtering-Based Multi-Sensory Data Fusion with Switching State-Space Model for Endoscopic Capsule Robots , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Yasin Almalioglu,et al.  A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots , 2017, ArXiv.

[36]  Jahanzaib Shabbir,et al.  A Survey of Deep Learning Techniques for Mobile Robot Applications , 2018, ArXiv.

[37]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Helder Araújo,et al.  Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots , 2017, Machine Vision and Applications.

[39]  Michael Korn,et al.  KinFu MOT: KinectFusion with Moving Objects Tracking , 2015, VISAPP.

[40]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[41]  Paulo Fernando Ferreira Rosa,et al.  Integration of People Detection and Simultaneous Localization and Mapping Systems for an Autonomous Robotic Platform , 2016, 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR).

[42]  Dieter Fox,et al.  Patch Volumes: Segmentation-Based Consistent Mapping with RGB-D Cameras , 2013, 2013 International Conference on 3D Vision.

[43]  Albert S. Huang,et al.  Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera , 2011, ISRR.

[44]  Tim Weyrich,et al.  Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion , 2013, 2013 International Conference on 3D Vision.

[45]  John J. Leonard,et al.  Real-time large-scale dense RGB-D SLAM with volumetric fusion , 2014, Int. J. Robotics Res..

[46]  Jahanzaib Shabbir,et al.  Artificial Intelligence and its Role in Near Future , 2018, ArXiv.

[47]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[48]  Helder Araújo,et al.  Deep EndoVO: A recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots , 2017, Neurocomputing.

[49]  Helder Araújo,et al.  Magnetic- Visual Sensor Fusion-based Dense 3D Reconstruction and Localization for Endoscopic Capsule Robots , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[50]  Luiz M. G. Gonçalves,et al.  Visual Odometry and Mapping for Indoor Environments Using RGB-D Cameras , 2014 .

[51]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[52]  Marsette Vona,et al.  Moving Volume KinectFusion , 2012, BMVC.

[53]  Daniel Cremers,et al.  Real-time visual odometry from dense RGB-D images , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).