Application of Discriminant Analysis and Cross-Validation on Proteomics Data.
暂无分享,去创建一个
Guillermo Quintás | Julia Kuligowski | David Pérez-Guaita | D. Pérez-Guaita | J. Kuligowski | G. Quintás
[1] L. A. Stone,et al. Computer Aided Design of Experiments , 1969 .
[2] Age K. Smilde,et al. Discriminant Q2 (DQ2) for improved discrimination in PLSDA models , 2008, Metabolomics.
[3] Maria E. Holmboe,et al. Monte-Carlo methods for determining optimal number of significant variables. Application to mouse urinary profiles , 2009, Metabolomics.
[4] Miguel de la Guardia,et al. Evaluation of the effect of chance correlations on variable selection using Partial Least Squares-Discriminant Analysis. , 2013, Talanta.
[5] Marcel J. T. Reinders,et al. Fewer permutations, more accurate P-values , 2009, Bioinform..
[6] Age K. Smilde,et al. Assessing the performance of statistical validation tools for megavariate metabolomics data , 2006, Metabolomics.
[7] Paul Geladi,et al. Principles of Proper Validation: use and abuse of re‐sampling for validation , 2010 .
[8] S. Wold,et al. PLS-regression: a basic tool of chemometrics , 2001 .
[9] Bjørn K. Alsberg,et al. Cross model validation and optimisation of bilinear regression models , 2008 .
[10] P. Filzmoser,et al. Repeated double cross validation , 2009 .
[11] Age K. Smilde,et al. UvA-DARE ( Digital Academic Repository ) Assessment of PLSDA cross validation , 2008 .
[12] Ljubomir J. Buturovic,et al. Cross-validation pitfalls when selecting and assessing regression and classification models , 2014, Journal of Cheminformatics.
[13] Age K. Smilde,et al. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies , 2011, Metabolomics.
[14] Katherine A. Bakeev. Process analytical technology : spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries , 2010 .