Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol
暂无分享,去创建一个
[1] Libchaber,et al. Non-Boussinesq effects in free thermal convection. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[2] W. Kinzelbach,et al. Is the turbulent wind in convective flows driven by fluctuations , 2003 .
[3] S. Grossmann. Scaling in thermal convection: A unifying view , 2022 .
[4] Eric Brown,et al. Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection , 2005, Journal of Fluid Mechanics.
[5] Ulrich Hansen,et al. On the validity of two-dimensional numerical approaches to time-dependent thermal convection , 2004 .
[6] Werne. Structure of hard-turbulent convection in two dimensions: Numerical evidence. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[7] J. Fourier. Théorie analytique de la chaleur , 2009 .
[8] Rosner,et al. Numerical simulations of soft and hard turbulence: Preliminary results for two-dimensional convection. , 1990, Physical review letters.
[9] D. Lohse,et al. Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes , 2004 .
[10] Non-Boussinesq effect: Thermal convection with broken symmetry , 1997 .
[11] Detlef Lohse,et al. Scaling in thermal convection: a unifying theory , 2000, Journal of Fluid Mechanics.
[12] Detlef Lohse,et al. Non-oberbeck-boussinesq effects in gaseous Rayleigh-Bénard convection. , 2007, Physical review letters.
[13] Rosner,et al. Development of hard-turbulent convection in two dimensions: Numerical evidence. , 1991, Physical review letters.
[14] A. Oberbeck,et al. Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen , 1879 .