Revealing Nonclassicality of Inaccessible Objects.

Some physical objects are hardly accessible to direct experimentation. It is then desirable to infer their properties based solely on the interactions they have with systems over which we have control. In this spirit, here we introduce schemes for assessing the nonclassicality of the inaccessible objects as characterized by quantum discord. We consider two probes individually interacting with the inaccessible object but not with each other. The schemes are based on monitoring entanglement dynamics between the probes. Our method is robust and experimentally friendly, as it allows the probes and the object to be open systems and makes no assumptions about the initial state, dimensionality of involved Hilbert spaces, and details of the probe-object Hamiltonian. We apply our scheme to a membrane-in-the-middle optomechanical system, to detect system-environment correlations in open system dynamics as well as nonclassicality of the environment, and we foresee potential benefits for the inference of the nonclassical nature of gravity.

[1]  J Eisert,et al.  Creating and probing multipartite macroscopic entanglement with light. , 2007, Physical review letters.

[2]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[3]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[4]  G. Guo,et al.  Experimental detection of polarization-frequency quantum correlations in a photonic quantum channel by local operations , 2013, 1311.5034.

[5]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[6]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[7]  F. Verstraete,et al.  Separable States can be used to distribute entanglement. , 2003, Physical review letters.

[8]  Manuel Gessner,et al.  Detecting nonclassical system-environment correlations by local operations. , 2011, Physical review letters.

[9]  M Paternostro,et al.  Quantum discord bounds the amount of distributed entanglement. , 2012, Physical review letters.

[10]  Jerzy Dajka,et al.  Distance between quantum states in the presence of initial qubit-environment correlations: A comparative study , 2011, 1107.1732.

[11]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[12]  S. Pirandola,et al.  Continuous-variable-entanglement swapping and its local certification: Entangling distant mechanical modes , 2013, 1312.0981.

[13]  S. Olivares,et al.  Two-step procedure to discriminate discordant from classical correlated or factorized states , 2014, 1411.3543.

[14]  Hermann Kampermann,et al.  Quantum cost for sending entanglement. , 2012, Physical review letters.

[15]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[16]  Purity as a witness for initial system-environment correlations in open-system dynamics , 2011, 1108.2370.

[17]  Werner Wegscheider,et al.  Coherent spin-exchange via a quantum mediator. , 2016, Nature nanotechnology.

[18]  Laszlo Gyongyosi,et al.  The Correlation Conversion property of quantum channels , 2013, Quantum Inf. Process..

[19]  Li Yulong,et al.  Experimentally witnessing the initial correlation between an open quantum system and its environment , 2011 .

[20]  E. Sudarshan,et al.  Completely positive maps and classical correlations , 2007, quant-ph/0703022.

[21]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[22]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[23]  Ford,et al.  On the quantum langevin equation , 1981, Physical review. A, General physics.

[24]  F. Illuminati,et al.  Extremal entanglement and mixedness in continuous variable systems , 2004, quant-ph/0402124.

[25]  S. Wissmann,et al.  Detecting initial system-environment correlations: Performance of various distance measures for quantum states , 2013, 1306.3248.

[26]  S. Pirandola,et al.  Entanglement swapping with local certification: Application to remote micromechanical resonators , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[27]  Jyrki Piilo,et al.  Witness for initial system-environment correlations in open-system dynamics , 2010, 1004.2184.

[28]  Matteo G. A. Paris,et al.  Experimental investigation of initial system-environment correlations via trace-distance evolution , 2011, 1105.0174.

[29]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  V. Giovannetti,et al.  Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion , 2000, quant-ph/0006084.

[31]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[32]  Manuel Gessner,et al.  Local witness for bipartite quantum discord , 2013, 1301.1022.

[33]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[34]  M. Aspelmeyer,et al.  Observation of strong coupling between a micromechanical resonator and an optical cavity field , 2009, Nature.

[35]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[36]  A. Buchleitner,et al.  Local detection of quantum correlations with a single trapped ion , 2013, Nature Physics.

[37]  Jonas Maziero,et al.  THEORETICAL AND EXPERIMENTAL ASPECTS OF QUANTUM DISCORD AND RELATED MEASURES , 2011, 1107.3428.

[38]  Michal Horodecki Simplifying Monotonicity Conditions for Entanglement Measures , 2005, Open Syst. Inf. Dyn..

[39]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[40]  G. Kimura,et al.  How to detect a possible correlation from the information of a subsystem in quantum-mechanical systems , 2007, 0705.4225.

[41]  V. Saligrama,et al.  Experimental realization of long-distance entanglement between spins in antiferromagnetic quantum spin chains , 2015, Nature Physics.

[42]  J. Piilo,et al.  Initial correlations in open-systems dynamics: The Jaynes-Cummings model , 2010, 1010.4402.

[43]  J. Luczka,et al.  Distance growth of quantum states due to initial system-environment correlations , 2010 .

[44]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[45]  M. Horodecki,et al.  Local versus nonlocal information in quantum-information theory: Formalism and phenomena , 2004, quant-ph/0410090.

[46]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[47]  M. Wolf,et al.  Bound entangled Gaussian states. , 2000, Physical review letters.