Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy

Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 × 32 pixel bolometer camera designed to cover the 53−215 μm spectral range in 4 colors, all at diffraction-limited resolution (5−21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.

[1]  Peter A. R. Ade,et al.  Measurements of the submillimetre emission noise from Mauna Kea , 1995 .

[2]  Jungyeon Cho,et al.  GRAIN ALIGNMENT AND POLARIZED EMISSION FROM MAGNETIZED T TAURI DISKS , 2007 .

[3]  Superthermal,et al.  Radiative Torques on Interstellar Grains : I . , 1996 .

[4]  John E. Vaillancourt,et al.  Analysis of the Far-Infrared/Submillimeter Polarization Spectrum Based on Temperature Maps of Orion , 2002 .

[5]  Terry Jay Jones,et al.  Mid-IR polarimetry: new vistas for SOFIA , 2007, SPIE Optical Engineering + Applications.

[6]  Jessie L. Dotson,et al.  Hale: a multi-wavelength far-infrared polarimeter for SOFIA , 2003, SPIE Astronomical Telescopes + Instrumentation.

[7]  Carl Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 2000 .

[8]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[9]  John F. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. III - Long-term evolution in a shearing sheet. IV - Nonaxisymmetric perturbations , 1992 .

[10]  E. Purcell,et al.  Suprathermal rotation of interstellar grains , 1979 .

[11]  Jun-Ichi Morino,et al.  First Detection of Submillimeter Polarization from T Tauri Stars , 1999 .

[12]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[13]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[14]  Alfred Krabbe,et al.  First-light SOFIA instruments , 2002, SPIE Optics + Photonics.

[15]  Stephen R. Platt,et al.  100-micron array polarimetry from the Kuiper Airborne Observatory - Instrumentation, techniques, and first results , 1991 .

[16]  A. Chepurnov,et al.  Polarization of Dust Emission in Clumpy Molecular Clouds and Cores , 2006, astro-ph/0611324.

[17]  Douglas Scott,et al.  SCUBA-2: a 10,000-pixel submillimeter camera for the James Clerk Maxwell Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[18]  W. G. Roberge,et al.  Barnett Relaxation in Thermally Rotating Grains , 1997 .

[19]  Th. Henning,et al.  Large dust particles in disks around T Tauri stars , 2006 .

[20]  Michael D. Niemack,et al.  Measuring two-millimeter radiation with a prototype multiplexed TES receiver for ACT , 2006, SPIE Astronomical Telescopes + Instrumentation.

[21]  Telemachos Ch. Mouschovias,et al.  Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .

[22]  Philip C. Myers,et al.  On the Efficiency of Grain Alignment in Dark Clouds , 1997, astro-ph/9706163.

[23]  Jessie L. Dotson,et al.  Submillimeter Array Polarimetry with Hertz , 1998 .

[24]  G. Siringo,et al.  A new polarimeter for (sub)millimeter bolometer arrays , 2004 .

[25]  Göran Olofsson,et al.  The far infrared transmission of crystal quartz at 3 K , 1987 .

[26]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[27]  C. D. Wilson,et al.  MAGNETIC FIELDS IN STAR-FORMING MOLECULAR CLOUDS. II. THE DEPOLARIZATION EFFECT IN THE OMC-3 FILAMENT OF ORION A , 2001 .

[28]  C. Dominik,et al.  Growth of Dust as the Initial Step Toward Planet Formation , 2006, astro-ph/0602617.

[29]  Dominic J. Benford,et al.  A 350-μm array polarimeter using translational modulators , 2004, SPIE Astronomical Telescopes + Instrumentation.

[30]  B. Draine,et al.  Nuclear Spin Relaxation within Interstellar Grains , 1999, astro-ph/9903235.

[31]  John E. Carlstrom,et al.  Polarizing Grids, Their Assemblies, and Beams of Radiation , 2003, astro-ph/0311414.

[32]  Jörn Beyer,et al.  In-focal-plane SQUID multiplexer , 2004 .

[33]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains. III. Dynamics with Thermal Relaxation , 2002 .

[34]  Samuel H. Moseley,et al.  HAWC: a far-infrared camera for SOFIA , 1998, Astronomical Telescopes and Instrumentation.

[35]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[36]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[37]  B. Wyncke,et al.  Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range: 10–600 cm−1 , 1997 .

[38]  D. C. Backer,et al.  Revealing the Molecular Universe: One Antenna is Never Enough , 2006 .

[39]  Robert W. Leach,et al.  MILLIPOL, A MILLIMETER/SUBMILLIMETER WAVELENGTH POLARIMETER: INSTRUMENT, OPERATION, AND CALIBRATION , 1990 .

[40]  D P Gonatas,et al.  Systematic effects in the measurement of far-infrared linear polarization. , 1989, Applied optics.

[41]  Giles Novak,et al.  Interferometric polarization control. , 2006, Applied optics.

[42]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[43]  David T. Chuss,et al.  First Results from the Submillimeter Polarimeter for Antarctic Remote Observations: Evidence of Large-Scale Toroidal Magnetic Fields in the Galactic Center , 2003 .

[44]  T. Joseph W. Lazio,et al.  High-Resolution, Wide-Field Imaging of the Galactic Center Region at 330 MHz , 2003 .

[45]  David T. Chuss,et al.  Magnetic Fields in Cool Clouds within the Central 50 Parsecs of the Galaxy , 2003 .

[46]  J. Greenstein,et al.  The Polarization of Starlight by Aligned Dust Grains. , 1951 .

[47]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[48]  L. Spitzer,et al.  Disorientation of interstellar grains in suprathermal rotation. , 1979 .

[49]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[50]  Jungyeon Cho,et al.  Generation of compressible modes in MHD turbulence , 2003 .

[51]  Dominic J. Benford,et al.  Backshort-Under-Grid arrays for infrared astronomy , 2006 .

[52]  E. J. Wollack,et al.  The variable-delay polarization modulator , 2006, SPIE Astronomical Telescopes + Instrumentation.

[53]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[54]  A. LazarianB. Draine Thermal flipping and thermal trapping: New elements in grain dynamics , 1999 .

[55]  A. Z. Dolginov,et al.  Orientation of cosmic dust grains , 1976 .

[56]  Jessie L. Dotson,et al.  Far-Infrared Polarimetry of Galactic Clouds from the Kuiper Airborne Observatory , 2000 .

[57]  A. Lazarian,et al.  Gold-type mechanisms of grain alignment , 1994 .

[58]  John E. Vaillancourt Polarized Emission from Interstellar Dust , 2007 .

[59]  D. Ward-Thompson,et al.  First Observations of the Magnetic Field Geometry in Prestellar Cores , 2000 .

[60]  M. Morris,et al.  Large, highly organized radio structures near the galactic centre , 1984, Nature.

[61]  Brazil,et al.  Polarimetry toward the IRAS Vela Shell. II. Extinction and Magnetic Fields , 2007, astro-ph/0702550.

[62]  Christine D. Wilson,et al.  Magnetic Fields in Star-Forming Molecular Clouds , 2000 .

[63]  Jessie L. Dotson,et al.  The Far-Infrared Polarization Spectrum: First Results and Analysis , 1999 .

[64]  T. Jenness,et al.  Magnetic field surrounding the starburst nucleus of the galaxy M82 from polarized dust emission , 2000, Nature.

[65]  Ny,et al.  ACCRETION DISKS AROUND YOUNG OBJECTS. III. GRAIN GROWTH , 2001, astro-ph/0101443.

[66]  Giles A Novak,et al.  Detection of submillimeter polarization in the Orion nebula , 1984 .

[67]  P. A. R. Ade,et al.  A submillimetre imaging polarimeter at the James Clerk Maxwell Telescope , 2003 .

[68]  Dominic J. Benford,et al.  GISMO: a 2-millimeter bolometer camera for the IRAM 30 m telescope , 2005, SPIE Astronomical Telescopes + Instrumentation.

[69]  Giorgio Savini,et al.  Far-infrared polarimeter with very low instrumental polarization , 2002, SPIE Astronomical Telescopes + Instrumentation.

[70]  W. Cotton,et al.  A 20 Centimeter Survey of the Galactic Center Region. I. Detection of Numerous Linear Filaments , 2004, astro-ph/0409292.

[71]  D. A. Schleuning,et al.  Far-infrared and Submillimeter Polarization of OMC-1: Evidence for Magnetically Regulated Star Formation , 1997 .

[72]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[73]  Andreas Kelz,et al.  Development of the wide-field IFU PPak , 2004, SPIE Astronomical Telescopes + Instrumentation.

[74]  A. E. Wright,et al.  THEORY OF STAR FORMATION. , 1970 .

[75]  B. Draine,et al.  On the Submillimeter Opacity of Protoplanetary Disks , 2005, astro-ph/0507292.

[76]  A. Lazarian,et al.  Radiative torque alignment: essential physical processes , 2007, 0707.3645.

[77]  R. F. Loewenstein,et al.  Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds , 2006 .

[78]  Takeshi Manabe,et al.  A new configuration of polarization-rotating dual-beam interferometer for space use , 2003 .