Open books decompositions of links of minimally elliptic singularities

We present an explicit Milnor open book decomposition supporting the canonical contact structure on the link of each minimally elliptic singularity whose fundamental cycle Z satisfies −3≤Z·Z≤−1. For the Milnor open books whose pages have genus less than three, we give a factorization of the monodromy which does not involve any left‐handed Dehn twists around interior curves. Necessary results regarding the roots of reducible, and irreducible elements in mapping class groups are proved, and some new relations in the mapping class groups are presented.

[1]  Jane Gilman Structures of Elliptic Irreducible Subgroups of the Modular Group , 1983 .

[2]  Alexander Lubotzky,et al.  Abelian and solvable subgroups of the mapping class groups , 1983 .

[3]  M. Bhupal,et al.  On the monodromy of Milnor open books , 2018 .

[4]  B. Teissier,et al.  Limites d’espaces tangents en géométrie analytique , 1988 .

[5]  A. Pichon Fibrations sur le cercle et surfaces complexes , 2001 .

[6]  P. Popescu-Pampu,et al.  On the contact boundaries of normal surface singularities , 2004 .

[7]  Samuel Eilenberg,et al.  Sur les transformations périodiques de la surface de sphère , 1934 .

[8]  EXPLICIT HORIZONTAL OPEN BOOKS ON SOME PLUMBINGS , 2005, math/0509611.

[9]  Sylvain Gervais A finite presentation of the mapping class group of a punctured surface , 2001 .

[10]  B. Kerékjártó,et al.  Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche , 1919 .

[11]  S. Broughton,et al.  CLASSIFYING FINITE GROUP ACTIONS ON SURFACES OF LOW GENUS , 1991 .

[12]  Sinem Onaran On sections of genus two Lefschetz fibrations , 2008, 0804.2237.

[13]  P. Popescu-Pampu,et al.  Complex singularities and contact topology , 2016 .

[14]  M. Bhupal OPEN BOOK DECOMPOSITIONS OF LINKS OF SIMPLE SURFACE SINGULARITIES , 2009 .

[15]  A. Constantin,et al.  The theorem of Kerekjarto on periodic homeomorphisms of the disc and the sphere , 2003, math/0303256.

[16]  Y. Eliashberg TOPOLOGICAL CHARACTERIZATION OF STEIN MANIFOLDS OF DIMENSION >2 , 1990 .

[17]  Henryk Żołądek Note on the deck transformations group and the monodromy group , 2002 .

[18]  Compact Stein surfaces with boundary as branched covers of B4 , 2000, math/0002042.

[19]  Milnor open books and Milnor fillable contact 3-manifolds , 2004, math/0409160.

[20]  M. Korkmaz,et al.  On sections of elliptic fibrations , 2006, math/0604516.

[21]  Handlebody construction of Stein surfaces , 1998, math/9803019.

[22]  Henry B. Laufer On Minimally Elliptic Singularities , 1977 .

[23]  Roots in the mapping class groups , 2006, math/0607278.

[24]  Geometric subgroups of mapping class groups , 1999, math/9906122.

[25]  B. Ozbagci,et al.  Canonical contact structures on some singularity links , 2012, 1206.3874.

[26]  M. Artin ON ISOLATED RATIONAL SINGULARITIES OF SURFACES. , 1966 .

[27]  J. Lipman Rational singularities, with applications to algebraic surfaces and unique factorization , 1969 .