Quantum dot formation on a strain-patterned epitaxial thin film

We model the effect of substrate strain patterning on the self-assembly of quantum dots (QDs). When the surface energy is isotropic, we demonstrate that strain patterning via embedded substrate inclusions may result in ordered, self-organized QD arrays. However, for systems with strong cubic surface energy anisotropy, the same patterning does not readily lead to an ordered array of pyramids at long times. We conclude that the form of the surface energy anisotropy strongly influences the manner in which QDs self-assemble into regular arrays.